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Chapter 1

The Nature of Mathematical

Economics

Economics is a complex discipline that may seem deceptively simple but

is actually challenging to learn, comprehend, and excel in. While students

possess a keen interest in learning about the economy, instructors need to

concentrate on teaching economics that comprises the theories and mod-

els that underpin the field. This inherent tension arises from the fact that

there is no single, tangible “economy" to study; rather, economics is based

on a set of theories and models that should be judged by their usefulness,

much like tools, rather than a single fact. This can make it difficult to un-

derstand the nature of economics.

Furthermore, what is commonly thought of as “facts" in economics are

actually predictive statements integrated into theoretical models that in-

volve a lot of math, particularly in microeconomic theory. Understanding

these technical concepts and logical reasoning is crucial for mastering the

subject, further adding to the challenge of learning economics.

The aim of these lecture notes is to introduce students to the funda-

mental aspects of mathematical knowledge and methods, such as matrix

1



2 CHAPTER 1. THE NATURE OF MATHEMATICAL ECONOMICS

algebra, mathematical analysis, and optimization theory. These essential

tools are not only necessary, but also greatly helpful in effectively learning

and mastering economics in general, and economic theory in particular.

1.1 Economics and Mathematical Economics

Economics is a social science that studies decision-making in the face of

limited resources. Specifically, it examines how individuals, such as con-

sumers, households, firms, organizations, and government agencies, make

trade-off choices that allocate scarce resources among competing uses.

Mathematical economics is a mathematical approach to economic anal-

ysis, in which economists use mathematical symbols to state problems and

draw upon known mathematical theorems to aid in reasoning.

Since mathematical economics is merely an approach to economic anal-

ysis, it should not and does not differ from the nonmathematical approach

to economic analysis in any fundamental way. The difference between

these two approaches is that in the former, the assumptions and conclu-

sions are stated in mathematical symbols rather than words and in the

equations rather than sentences.

1.2 Advantages of the Mathematical Approach

The mathematical approach offers several advantages, such as:

(1) It makes language more precise and clarifies the assump-

tions. This helps to avoid unnecessary debates that can arise

from inaccurate verbal language.

(2) It makes analytical logic more rigorous and clearly states the

boundary, applicable scope, and conditions for a conclusion
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to hold. Otherwise, the abuse of a theory may occur.

(3) Mathematics can help obtain results that cannot be easily

attained through intuition.

(4) It helps to improve and extend existing economic theories.

However, it is noteworthy that a good command of mathematics can-

not guarantee being a good economist. It also requires a thorough un-

derstanding of the analytical framework, research methods of economics,

and a good intuition and insight into real economic environments and is-

sues. Studying economics not only requires an understanding of various

economic terms, concepts, and results from the perspective of mathemat-

ics (including geometry), but more importantly, when those are given by

mathematical language or geometric figures, we need to get to their eco-

nomic meaning and the underlying profound economic thoughts and ide-

als. Therefore, we should avoid being confused by mathematical formulas

or symbols in the study of economics.

1.3 Methodology of Scientific Economic Analy-

sis

Scientific economic analysis is essential for studying and solving com-

plex economic and social problems. However, relying solely on theory or

practice is insufficient. The "three dimensions" of theoretical logic, practi-

cal knowledge, and historical perspective, and the "six natures" of scientificity,

rigor, practicality, pertinency, foresight, and intellectual depth are crucial for

conducting comprehensive analysis and producing sound conclusions.

The use of empirical quantitative analysis is necessary to confirm theo-

retical reasoning and logical deduction. Historical experience and lesson-

s is also crucial for understanding fundamental laws, principles, human
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behavior patterns, and values. However, relying solely on historical expe-

rience may lead to outdated ideas and hinder economic and social devel-

opment. Therefore, a balance between deductive reasoning and empirical

verification is necessary.

By applying the "three dimensions and six natures" in reasoning, test-

ing, and verification, decision-making can be both scientific and artistic,

ensuring that conclusions or reform measures and plans meet the neces-

sary criteria. This comprehensive approach is crucial for studying and

solving major economic and social issues. Indeed, all knowledge is presented

as history, all science is exhibited as logic, and all judgment is understood in the

sense of statistics.

As such, it is not surprising that mathematics and mathematical statis-

tics/econometrics are used as the basic and most important analytical tool-

s in every field of economics. Therefore, mastering sufficient mathematical

knowledge is necessary if you want to learn economics well, conduct eco-

nomic research, and become a good economist.

All in all, to become a good economist, you need to have an original,

creative, and academic way of critical thinking.



Chapter 2

Economic Models

2.1 Ingredients of a Mathematical Model

An economic model is a theoretical framework used to understand the be-

havior of economic agents and the workings of the economy. Although it

is not necessary for an economic model to be mathematical, most econom-

ic models are mathematical in nature. Typically, a mathematical economic

model consists of a set of equations that describe the relationships among

variables in the model.

The equations in an economic model are derived from a set of analyti-

cal assumptions about the behavior of economic agents and the workings

of the economy. By specifying the functional form of these relationships,

the equations give mathematical form to the assumptions. Then, by apply-

ing mathematical operations to these equations, economists seek to derive

a set of conclusions that logically follow from the assumptions.

5



6 CHAPTER 2. ECONOMIC MODELS

2.2 The Real-Number System

Whole numbers such as 1, 2, · · · are called positive numbers; these are the

numbers most frequently used in counting. Their negative counterparts

−1,−2,−3, · · · are called negative integers. The number 0 (zero), on the

other hand, is neither positive nor negative, and it is in that sense unique.

Let us lump all the positive and negative integers and the number zero in-

to a single category, referring to them collectively as the set of all integers.

Integers of course, do not exhaust all the possible numbers, for we have

fractions, such as 2
3 , 5

4 , and 7
3„ which – if placed on a ruler – would fall

between the integers. Also, we have negative fractions, such as −1
2 and

−2
5 . Together, these make up the set of all fractions.

The common property of all fractional number is that each is express-

ible as a ratio of two integers; thus fractions qualify for the designation

rational numbers (in this usage, rational means ratio-nal). But integers are

also rational, because any integer n can be considered as the ratio n/1. The

set of all fractions together with the set of all integers from the set of all

rational numbers.

Once the notion of rational numbers is used, however, there natural-

ly arises the concept of irrational numbers – numbers that cannot be ex-

pressed as raios of a pair of integers. One example is
√

2 = 1.4142 · · · .

Another is π = 3.1415 · · · .

Each irrational number, if placed on a ruler, would fall between two

rational numbers, so that, just as the fraction fill in the gaps between the

integers on a ruler, the irrational number fill in the gaps between rational

numbers. The result of this filling-in process is a continuum of numbers,

all of which are so-called “real numbers." This continuum constitutes the

set of all real numbers, which is often denoted by the symbol R.
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2.3 The Concept of Sets

A set is simply a collection of distinct objects. The objects may be a group

of distinct numbers, or something else. Thus, all students enrolled in a

particular economics course can be considered a set, just as the three inte-

gers 2, 3, and 4 can form a set. The object in a set are called the elements

of the set.

There are two alternative ways of writing a set: by enumeration and

by description. If we let S represent the set of three numbers 2, 3 and 4, we

write by enumeration of the elements, S = {2, 3, 4}. But if we let I denote

the set of all positive integers, enumeration becomes difficult, and we may

instead describe the elements and write I = {x|x is a positive integer},

which is read as follows: “I is the set of all x such that x is a positive

integer." Note that the braces are used enclose the set in both cases. In

the descriptive approach, a vertical bar or a colon is always inserted to

separate the general symbol for the elements from the description of the

elements.

A set with finite number of elements is called a finite set. Set I with an

infinite number of elements is an example of an infinite set. Finite sets are

always denumerable (or countable), i.e., their elements can be counted

one by one in the sequence 1, 2, 3, · · · . Infinite sets may, however, be either

denumerable (set I above) or nondenumerable (for example, J = {x|2 <
x < 5}).

Membership in a set is indicated by the symbol ∈ (a variant of the

Greek letter epsilon ϵ for “element"), which is read: “is an element of."

If two sets S1 and S2 happen to contain identical elements,

S1 = {1, 2, a, b} and S2 = {2, b, 1, a}

then S1 and S2 are said to be equal (S1 = S2). Note that the order of
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appearance of the elements in a set is immaterial.

If we have two sets T = {1, 2, 5, 7, 9} and S = {2, 5, 9}, then S is a

subset of T , because each element of S is also an element of T . A more

formal statement of this is: S is a subset of T if and only if x ∈ S implies

x ∈ T . We write S ⊆ T or T ⊇ S.

It is possible that two sets happen to be subsets of each other. When

this occurs, however, we can be sure that these two sets are equal.

If a set have n elements, a total of 2n subsets can be formed from those

elements. For example, the subsets of {1, 2} are: ∅, {1}, {2} and {1, 2}.

If two sets have no elements in common at all, the two sets are said to

be disjoint.

The union of two sets A and B is a new set containing elements belong

to A, or to B, or to both A and B. The union set is symbolized by A ∪ B

(read: “A union B").

Example 2.3.1 If A = {1, 2, 3}, B = {2, 3, 4, 5}, then A ∪B = {1, 2, 3, 4, 5}.

The intersection of two sets A and B, on the other hand, is a new

set which contains those elements (and only those elements) belonging

to both A and B. The intersection set is symbolized by A ∩ B (read: “A

intersection B").

Example 2.3.2 If A = {1, 2, 3}, A = {4, 5, 6}, then A ∪B = ∅.

In a particular context of discussion, if the only numbers used are the

set of the first seven positive integers, we may refer to it as the universal

set U . Then, with a given set, say A = {3, 6, 7}, we can define another set

Ā (read: “the complement of A") as the set that contains all the numbers in

the universal set U which are not in the set A. That is: Ā = {1, 2, 4, 5}.

Example 2.3.3 If U = {5, 6, 7, 8, 9}, A = {6, 5}, then Ā = {7, 8, 9}.
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Properties of unions and intersections:

A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

2.4 Relations and Functions

An ordered pair (a, b) is a pair of mathematical objects. The order in which

the objects appear in the pair is significant: the ordered pair (a, b) is dif-

ferent from the ordered pair (b, a) unless a = b. In contrast, a set of two

elements is an unordered pair: the unordered pair {a, b} equals the un-

ordered pair {b, a}. Similar concepts apply to a set with more than two

elements, ordered triples, quadruples, quintuples, etc., are called ordered

sets.

Example 2.4.1 To show the age and weight of each student in a class, we

can form ordered pairs (a, w), in which the first element indicates the age

(in years) and the second element indicates the weight (in pounds). Then

(19, 128) and (128, 19) would obviously mean different things.

Suppose, from two given sets, x = {1, 2} and y = {3, 4}, we wish to

form all the possible ordered pairs with the first element taken from set x

and the second element taken from set y. The result will be the set of four

ordered pairs (1,2), (1,4), (2,3), and (2,4). This set is called the Cartesian

product, or direct product, of the sets x and y and is denoted by x × y

(read “x cross y").
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Extending this idea, we may also define the Cartesian product of three

sets x, y, and z as follows:

x× y × z = {(a, b, c)|a ∈ x, b ∈ y, c ∈ z}

which is the set of ordered triples.

Example 2.4.2 If the sets x, y, and z each consist of all the real numbers,

the Cartesian product will correspond to the set of all points in a three-

dimension space. This may be denoted by R × R × R, or more simply,

R3.

Example 2.4.3 The set {(x, y)|y = 2x} is a set of ordered pairs including,

for example, (1,2), (0,0), and (-1,-2). It constitutes a relation, and its graph-

ical counterpart is the set of points lying on the straight line y = 2x.

Example 2.4.4 The set {(x, y)|y ≤ x} is a set of ordered pairs including,

for example, (1,0), (0,0), (1,1), and (1,-4). The set corresponds the set of all

points lying on below the straight line y = x.

As a special case, however, a relation may be such that for each x value

there exists only one corresponding y value. The relation in example 2.4.3

is a case in point. In that case, y is said to be a function of x, and this

is denoted by y = f(x), which is read: “y equals f of x." A function is

therefore a set of ordered pairs with the property that any x value uniquely

determines a y value. It should be clear that a function must be a relation,

but a relation may not be a function.

A function is also called a mapping, or transformation; both words

denote the action of associating one thing with another. In the statement

y = f(x), the functional notation f may thus be interpreted to mean a rule

by which the set x is “mapped" (“transformed") into the set y. Thus we
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may write

f : x → y

where the arrow indicates mapping, and the letter f symbolically specifies

a rule of mapping.

In the function y = f(x), x is referred to as the argument of the func-

tion, and y is called the value of the function. We shall also alternatively

refer to x as the independent variable (also known as the exogenous vari-

ables) and y as the dependent variable (also known as the endogenous

variables). The set of all permissible values that x can take in a given con-

text is known as the domain of the function, which may be a subset of the

set of all real numbers. The y value into which an x value is mapped is

called the image of that x value. The set of all images is called the range

of the function, which is the set of all values that the y variable will take.

Thus the domain pertains to the independent variable x, and the range has

to do with the dependent variable y.

2.5 Types of Function

A function whose range consists of only one element is called a constant

function.

Example 2.5.1 The function y = f(x) = 7 is a constant function.

The constant function is actually a “degenerated" case of what are known

as polynomial functions. A polynomial functions of a single variable has

the general form

y = a0 + a1x+ a2x
2 + · · · + anx

n
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in which each term contains a coefficient as well as a nonnegative-integer

power of the variable x.

Depending on the value of the integer n (which specifies the highest

power of x), we have several subclasses of polynomial function:

Case of n = 0 : y = a0 [constant function]
Case of n = 1 : y = a0 + a1x [linear function]
Case of n = 2 : y = a0 + a1x+ a2x

2 [quadritic function]
Case of n = 3 : y = a0 + a1x+ a2x

2 + a3x
3 [ cubic function]

A function such as

y = x− 1
x2 + 2x+ 4

in which y is expressed as a ratio of two polynomials in the variable x,

is known as a rational function (again, meaning ratio-nal). According to

the definition, any polynomial function must itself be a rational function,

because it can always be expressed as a ratio to 1, which is a constant

function.

Any function expressed in terms of polynomials and or roots (such as

square root) of polynomials is an algebraic function. Accordingly, the

function discussed thus far are all algebraic. A function such as y =
√
x2 + 1 is not rational, yet it is algebraic.

However, exponential functions such as y = bx, in which the inde-

pendent variable appears in the exponent, are nonalgebraic. The closely

related logarithmic functions, such as y = logb x, are also nonalgebraic.

Rules of Exponents:

Rule 1: xm × xn = xm+n

Rule 2:
xm

xn
= xm−n (x ̸= 0)
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Rule 3: x−n = 1
xn

Rule 4: x0 = 1 (x ̸= 0)

Rule 5: x
1
n = n

√
x

Rule 6: (xm)n = xmn

Rule 7: xm × ym = (xy)m

2.6 Functions of Two or More Independent Vari-

ables

Thus for far, we have considered only functions of a single independent

variable, y = f(x). But the concept of a function can be readily extended

to the case of two or more independent variables. Given a function

z = g(x, y)

a given pair of x and y values will uniquely determine a value of the de-

pendent variable z. Such a function is exemplified by

z = ax+ by or z = a0 + a1x+ a2x
2 + b1y + b2y

2

Functions of more than one variables can be classified into various

types, too. For instance, a function of the form

y = a1x1 + a2x2 + · · · + anxn

is a linear function, whose characteristic is that every variable is raised to

the first power only. A quadratic function, on the other hand, involves first

and second powers of one or more independent variables, but the sum of
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exponents of the variables appearing in any single term must not exceed

two.

Example 2.6.1 y = ax2 + bxy + cy2 + dx+ ey + f is a quadratic function.

2.7 Levels of Generality

In discussing the various types of function, we have without explicit no-

tice introducing examples of functions that pertain to varying levels of

generality. In certain instances, we have written functions in the form

y = 7, y = 6x+ 4, y = x2 − 3x+ 1 (etc.)

Not only are these expressed in terms of numerical coefficients, but they al-

so indicate specifically whether each function is constant, linear, or quadrat-

ic. In terms of graphs, each such function will give rise to a well-defined

unique curve. In view of the numerical nature of these functions, the so-

lutions of the model based on them will emerge as numerical values also.

The drawback is that, if we wish to know how our analytical conclusion

will change when a different set of numerical coefficients comes into effec-

t, we must go through the reasoning process afresh each time. Thus, the

result obtained from specific functions have very little generality.

On a more general level of discussion and analysis, there are functions

in the form

y = a, y = bx+ a, y = cx2 + bx+ a (etc.)

Since parameters are used, each function represents not a single curve but

a whole family of curves. With parametric functions, the outcome of math-

ematical operations will also be in terms of parameters. These results are

more general.

In order to attain an even higher level of generality, we may resort to
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the general function statement y = f(x), or z = g(x, y). When expressed

in this form, the functions is not restricted to being either linear, quadrat-

ic, exponential, or trigonometric – all of which are subsumed under the

notation. The analytical result based on such a general formulation will

therefore have the most general applicability.
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Chapter 3

Equilibrium Analysis in

Economics

3.1 The Meaning of Equilibrium

Equilibrium in economics refers to a state where there is no tendency to

change. It can be defined differently depending on the context. In general,

it means selecting the best option from a set of available choices based

on a certain criterion. This analysis of equilibrium is often referred to as

statics. However, it is important to note that just because something is in

equilibrium does not mean it is desirable or ideal.

This chapter explores two common examples of equilibrium analysis in

economics. The first is a microeconomic example of a market equilibrium,

where supply and demand conditions determine the price of a commodity.

The second is a macroeconomic example of the equilibrium in a Keynesian

national income model, where consumption and investment patterns de-

termine the equilibrium level of income. These two examples will be used

throughout the course.

17
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3.2 Partial Market Equilibrium - A Linear Model

In a static-equilibrium model, the goal is to find the values of the endoge-

nous variables that satisfy the equilibrium conditions of the model.

3.3 Partial Market Equilibrium - A Linear Model

In a static-equilibrium model, the standard problem is that of finding the

set of values of the endogenous variables which will satisfy the equilibri-

um conditions of the model.

Partial-Equilibrium Market Model

Partial-equilibrium market model is a model used to determine the price

of a commodity in an isolated market. It considers three variables:

Qd = the quantity demanded of the commodity;

Qs = the quantity supplied of the commodity;

P = the price of the commodity.

The Equilibrium Condition: Qd = Qs.

The model consists of equilibrium condition, demand function, and

supply function:

Qd = Qs,

Qd = a− bP (a, b > 0),

Qs = −c+ dP (c, d > 0),

−b is the slope of Qd, a is the vertical intercept of Qd, d is the slope of Qs,

and −c is the vertical intercept of Qs.
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Note that, contrary to the usual practice, quantity rather than price has

been plotted vertically in the figure.
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Figure 3.1: The linear model and its market equilibrium.

One way of finding the equilibrium is by successive elimination of vari-

ables and equations through substitution.

From Qs = Qd, we have

a− bP = −c+ dP

and thus

(b+ d)P = a+ c.

Since b+ d ̸= 0, the equilibrium price is

P̄ = a+ c

b+ d
.

The equilibrium quantity can be obtained by substituting P̄ into either

Qs or Qd:

Q̄ = ad− bc

b+ d
.
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Since the denominator (b + d) is positive, the positivity of Q̄ requires

that the numerator (ad − bc) > 0. Thus, to be economically meaningful,

the model should contain the additional restriction that ad > bc.

3.4 Partial Market Equilibrium - A Nonlinear Mod-

el

The partial market model can be nonlinear. For example, suppose the

model is given by

Qd = Qs (equilibrium condition);

Qd = 4 − P 2;

Qs = 4P − 1.

As previously stated, this system of three equations can be reduced to

a single equation by substitution.

4 − P 2 = 4P − 1,

or

P 2 + 4P − 5 = 0,

which is a quadratic equation. In general, given a quadratic equation in

the form

ax2 + bx+ c = 0 (a ̸= 0),

its two roots can be obtained from the quadratic formula:

x̄1, x̄2 = −b±
√
b2 − 4ac

2a
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where the “+" part of the “±" sign yields x̄1 and “−" part yields x̄2. Thus,

by applying the quadratic formulas to P 2 +4P−5 = 0, we have P̄1 = 1 and

P̄2 = −5, but only the first is economically admissible, as negative prices

are ruled out.

The Graphical Solution

0-1-2
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1

1

2

2

3

4

Q
d ,

Q
s

P

Q
d
 = 4 -  P!

Q
s
 = 4P - 1

( 1,  3 )

Figure 3.2: The nonlinear model and its market equilibrium.

However, in general, the market model can be highly nonlinear, mak-

ing it difficult or even impossible to find an explicit solution. In such cases,

we may need to determine if there exists an implicit solution. This can be

achieved using the Implicit-Function Theorem in Chapter 8.

3.5 General Market Equilibrium

So far, we have discussed the methods for analyzing an isolated market,

where the demand and supply of a commodity are functions of the price
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of that commodity alone. However, in reality, there are usually many sub-

stitutes and complementary goods, making it necessary to consider the

effects not only of the price of the commodity itself but also of the prices

of other related commodities.

A more realistic model for the demand and supply functions of a com-

modity should therefore take into account the prices of all related com-

modities, and the equilibrium condition for an n-commodity market mod-

el will involve n equations, one for each commodity, in the form of:

Ei = Qdi −Qsi = 0 for i = 1, 2, ..., n,

where Qdi = Qdi(P1, P2, · · · , Pn) and Qsi = Qsi(P1, P2, · · · , Pn) are the de-

mand and supply functions of commodity i, and (P1, P2, · · · , Pn) are prices

of commodities.

Thus, solving n equations for P = (P1, P2, · · · , Pn):

Ei(P1, P2, · · · , Pn) = 0,

we obtain the n equilibrium prices P̄i – if a solution does indeed exist. And

then the Q̄i may be derived from the demand or supply functions.

Two-Commodity Market Model

To illustrate the problem, let us consider a two-commodity market model

with linear demand and supply functions. In parametric terms, such a

model can be written as

Qd1 −Qs1 = 0 (equilibrium condition for commidity 1);

Qd1 = a0 + a1P1 + a2P2 (consumer 1’ demand function);

Qs1 = b0 + b1P1 + b2P2 (producer 1’ supply function);
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Qd2 −Qs2 = 0 (equilibrium condition for commdity 2);

Qd2 = α0 + α1P1 + α2P2 (consumer 2’ demand function);

Qs2 = β0 + β1P1 + β2P2 (producer 2’ supply function).

By substituting the second and third equations into the first equation

and the fifth and sixth equations into the fourth equation, the model can

be reduced to two equations in two variables:

(a0 − b0) + (a1 − b1)P1 + (a2 − b2)P2 = 0

(α0 − β0) + (α1 − β1)P1 + (α2 − β2)P2 = 0

If we let

ci = ai − bi (i = 0, 1, 2),

γi = αi − βi (i = 0, 1, 2),

the above two linear equations can be written as

c1P1 + c2P2 = −c0;

γ1P1 + γ2P2 = −γ0,

which can be solved by further elimination of variables.

The solutions are

P̄1 = c2γ0 − c0γ2

c1γ2 − c2γ1
;

P̄2 = c0γ1 − c1γ0

c1γ2 − c2γ1
.

For these two values to make sense, certain restrictions should be im-

posed on the model. Firstly, we require the common denominator c1γ2 −
c2γ1 ̸= 0. Secondly, to assure positivity, the numerator must have the same
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sign as the denominator.

Numerical Example

Suppose that the demand and supply functions are numerically as follows:

Qd1 = 10 − 2P1 + P2;

Qs1 = −2 + 3P1;

Qd2 = 15 + P1 − P2;

Qs2 = −1 + 2P2.

By substitution, we have

5P1 − P2 = 12;

−P1 + 3P2 = 16,

which are two linear equations. The solutions for the equilibrium prices

and quantities are P̄1 = 52/14, P̄2 = 92/14, Q̄1 = 64/7, Q̄2 = 85/7.

Similarly, for the n−commodities market model, when demand and

supply functions are linear in prices, we can have n linear equations. In the

above, we assume that an equal number of equations and unknowns has

a unique solution. However, some very simple examples should convince

us that an equal number of equations and unknowns does not necessarily

guarantee the existence of a unique solution.

For the two linear equations,

 x+ y = 8,
x+ y = 9

,
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we can easily see that there is no solution.

The second example shows a system has an infinite number of solu-

tions:  2x+ y = 12;
4x+ 2y = 24

.

These two equations are functionally dependent, which means that one

can be derived from the other. Consequently, one equation is redundant

and may be dropped from the system. Any pair (x̄, ȳ) is the solution as

long as (x̄, ȳ) satisfies y = 12 − x.

Now consider the case of more equations than unknowns. In gener-

al, there is no solution. But, when the number of unknowns equals the

number of functionally independent equations, the solution exists and is

unique. The following example shows this fact.

2x+ 3y = 58;

y = 18;

x+ y = 20.

Thus for simultaneous-equation model, we need systematic methods

of testing the existence of a unique (or determinate) solution. There are

our tasks in the following chapters.

3.6 Equilibrium in National-Income Analysis

The equilibrium analysis can be also applied to other areas of economics.

As a simple example, we may cite the familiar Keynesian national-income
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model,

Y = C + I0 +G0 (equilibrium condition);

C = a+ bY (consumption function),

where Y and C stand for the endogenous variables national income and

consumption expenditure, respectively, and I0 and G0 represent the ex-

ogenously determined investment and government expenditures, respec-

tively.

Solving these two linear equations, we obtain the equilibrium national

income and consumption expenditure:

Ȳ = a+ I0 +G0

1 − b
,

C̄ = a+ b(I0 +G0)
1 − b

.



Chapter 4

Linear Models and Matrix

Algebra

In the previous chapter, we saw that for the one-commodity partial mar-

ket equilibrium model, the solutions for P̄ and Q̄ were relatively simple,

despite the involvement of several parameters. However, as more com-

modities are incorporated into the model, these solution formulas quickly

become cumbersome and unwieldy. Therefore, we need new methods that

are suitable for handling a large system of simultaneous equations. Matrix

algebra provides such a method.

Matrix algebra enables us to do many things, including:

(1) Providing a compact way of writing an equation system,

even if it is extremely large.

(2) Leading to a way of testing the existence of a solution with-

out actually solving it, by evaluating a determinant - a con-

cept closely related to that of a matrix.

(3) Giving a method of finding that solution if it exists.

Throughout these lecture notes, we will use bold letters such as a to

denote a vector and bold capital letters such as A to denote a matrix.

27
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4.1 Matrix and Vectors

In general, a system of m linear equations in n variables (x1, x2, · · · , xn)
can be arranged into such formula

a11x1 + a12x2 + · · · a1nxn = d1,

a21x1 + a22x2 + · · · a2nxn = d2,

· · ·
am1x1 + am2x2 + · · · amnxn = dm,

(4.1.1)

where the double-subscripted symbol aij represents the coefficient appear-

ing in the ith equation and attached to the jth variable xj , and dj represents

the constant term in the jth equation.

Example 4.1.1 The two-commodity linear market model can be written –

after eliminating the quantity variables – as a system of two linear equa-

tions.

c1P1 + c2P2 = −c0,

γ1P1 + γ2P2 = −γ0.

Matrix as Arrays

There are essentially three types of ingredients in the equation system

(3.1). The first is the set of coefficients aij ; the second is the set of vari-

ables x1, x2, · · · , xn; and the last is the set of constant terms d1, d2, · · · , dm.

If we arrange the three sets as three rectangular arrays and label them,

respectively, by bold A, x, and d, then we have

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

 ,
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x =



x1

x2

· · ·
xn

 ,

d =



d1

d2

· · ·
dm

 .

Example 4.1.2 Given the linear-equation system:

6x1 + 3x2 + x3 = 22
x1 + 4x2 − 2x3 = 12
4x1 − x2 + 5x3 = 10

,

we can write

A =


6 3 1
1 4 −2
4 −1 5

 ,

x =


x1

x2

x3

 ,

d =


22
12
10

 .

Each of these three arrays given above constitutes a matrix.

A matrix is defined as a rectangular array of numbers, parameters, or

variables. As a shorthand device, the array in matrix A can be written
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more simple as

A = [aij]m×n (i = 1, 2, · · · ,m; j = 1, 2, · · · , n).

Vectors as Special Matrices

The number of rows and columns in a matrix together define the dimen-

sion of the matrix. For instance, A is said to be of dimension m× n. In the

special case where m = n, the matrix is called a square matrix.

If a matrix contains only one column (row), it is called a column (row)

vector. For notation purposes, a row vector is often distinguished from a

column vector by the use of a primed symbol:

x′ = [x1, x2, · · · , xn].

Remark 4.1.1 A vector is merely an ordered n-tuple and, as such, it may

be interpreted as a point in an n-dimensional space.

Using the matrices defined in (3.2), we can express the equation system

(3.1) simply as:

Ax = d.

However, the equation Ax = d prompts at least two questions. First,

how do we multiply two matrices A and x? Second, what is meant by

the equality of Ax and d? Since matrices involve whole blocks of num-

bers, the familiar algebraic operations defined for single numbers are not

directly applicable, and there is a need for a new set of operation rules.
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4.2 Matrix Operations

The Equality of Two Matrices

A = B if and only if aij = bij for all i = 1, 2, · · · ,m, j = 1, 2, · · · , n.

Addition and Subtraction of Matrices

A + B = [aij] + [bij] = [aij + bij],

i.e., the addition of A and B is defined as the addition of each pair of

corresponding elements.

Remark 4.2.1 Two matrices can be added (equal) if and only if they have

the same dimension.

Example 4.2.1 4 9
2 1

+

2 0
0 7

 =

6 9
2 8

 .
Example 4.2.2

a11 a12 a13

a21 a22 a23

+

b11 b12 b13

b21 b22 b23

 =

a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b23

 .

The Subtraction of Matrices:

A − B is defined by

[aij] − [bij] = [aij − bij].

Example 4.2.3 19 3
2 0

−

6 8
1 3

 =

13 −5
1 −3

 .
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Scalar Multiplication:

λA = λ[aij] = [λaij],

i.e., to multiply a matrix by a number is to multiply every element of that

matrix by the given scalar.

Example 4.2.4

7

3 −1
0 5

 =

21 −7
0 35

 .
Example 4.2.5

−1

a11 a12 a13

a21 a22 a23

 =

−a11 −a12 −a13

−a21 −a22 −a23

 .

Multiplication of Matrices:

Given two matrices Am×n and Bp×q, the conformability condition for mul-

tiplication AB is that the column dimension of A must be equal to the row

dimension of B, i.e., the matrix product AB will be defined if and only if

n = p. If defined, the product AB will have the dimension m× q.

The product AB is defined by

AB = C

with cij = ai1b1j + ai2b2j + · · · + ainbnj = ∑n
l=1 ailblj.

Example 4.2.6

a11 a12

a21 a22


b11 b12

b21 b22

 =

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

 .
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Example 4.2.7

3 5
4 6


−1 0

4 7

 =

−3 + 20 35
−4 + 24 42

 =

17 35
20 42

 .

Example 4.2.8

u′ = [u1, u2, · · · , un] and v′ = [v1, v2, · · · , vn],

u′v = u1v1 + u2v2 + · · · + unvn =
n∑
i=1

uivi.

This can be described by using the concept of the inner product of two

vectors u and v.

v · v = u1v1 + u2v2 + · · · + unvn = u′v.

Example 4.2.9 For the linear-equation system (4.1.1), the coefficient matrix

and the variable vector are:

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

 and x =



x1

x2

· · ·
xn

 ,

and we then have

Ax =



a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn

· · ·
am1x1 + am2x2 + · · · + amnxn

 .
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Thus, the linear-equation system (4.1.1) can indeed be simply written as

Ax = d.

Example 4.2.10 Given u =

3
2

 and v′ = [1, 4, 5], we have

uv′ =

3 × 1 3 × 4 3 × 5
2 × 1 2 × 4 2 × 5

 =

3 12 15
2 8 10

 .
It is important to distinguish the meaning of uv′ (a matrix with dimension

n× n) and u′v (a 1 × 1 matrix, or a scalar).

4.3 Linear (In)dependence of Vectors

Definition 4.3.1 A set of vectors v1, · · · ,vn is said to be linearly depen-

dent if one of them can be expressed as a linear combination of the re-

maining vectors, or equivalently, there exist scalars k1, · · · , kn not all zero

such that
n∑
i=1

kivi = 0; (4.3.2)

otherwise, they are linearly independent (i.e., only when ki = 0 for all i).

Written in matrix form, we have

V k = 0, (4.3.3)

where

V =



v′
1

v′
2

· · ·
v′
m,


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and 0 is the zero vector, i.e., all elements of 0 are zeros.

Note that if there are only two vectors, linear dependence means that

one is a scalar multiple of the other.

Example 4.3.1 The three vectors

v1 =

2
7

 , v2 =

1
8

 , v3 =

4
5


are linearly dependent because v3 is a linear combination of v1 and v2;

3v1 − 2v2 =

 6
21

−

 2
16

 =

4
5

 = v3

or

3v1 − 2v2 − v3 = 0,

where 0 =

0
0

 represents a zero vector.

Example 4.3.2 The three vectors

v1 =

2
3

 , v2 =

3
1

 , v3 =

1
5


are linearly dependent since v1 is a linear combination of v2 and v3:

v1 = 1
2

v2 + 1
2

v3.

In fact, as long as the number of vectors n surpasses the dimension m

of the vector space they belong to, it can be shown that these vectors are

linearly dependent.

Generally, verifying the linear (in)dependence of a set of n vectors v1,v2, . . . ,vn
becomes challenging when m exceeds 2. Nevertheless, a way to simplify
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this verification process involves checking if the system of homogeneous

linear equations given by (4.3.3) admits a nonzero solution. We will pro-

vide a relatively simple way to check this.

4.4 Commutative, Associative, and Distributive

Laws

The following basic laws on matrix operations sometimes can significantly

simplify the computation of matrices.

The commutative and associative laws of matrices can be stated as fol-

lows:

Commutative Law:

A + B = B + A.

Proof: A+B = [aij]+[bij] = [aij+bij] = [bij+aij] = [bij]+[aij] = B +A.

Associative Law:

(A + B) + C = A + (B + C).

Proof: (A + B) + C = ([aij] + [bij]) + [cij] = [aij + bij] + [cij] = [aij + bij +
cij] = [aij+(bij+cij)] = [aij]+([bij+cij]) = [aij]+([bij]+[cij]) = A+(B+C).

Matrix Multiplication

Matrix multiplication is not commutative, that is,

AB ̸= BA.

Even when AB is defined, BA may not be; but even if both products

are defined, AB = BA may not hold.
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Example 4.4.1 Let A =

1 2
3 4

, B =

0 −1
6 7

. Then AB =

12 13
24 25

, but

BA =

−3 −4
27 40

.

The scalar multiplication of a matrix does obey. The commutative law:

kA = Ak

if k is a scalar.

Associative Law:

(AB)C = A(BC)

provided A is m× n, B is n× p, and C is p× q.

Distributive Law

A(B + C) = AB + AC [premultiplication by A];

(B + C)A = BA + CA [postmultiplication by A].

4.5 Identity Matrices and Null Matrices

Definition 4.5.1 Identity matrix, denoted by I or In in which n indicates

its dimension, is a square matrix with ones in its principal diagonal and

zeros everywhere else. That is,

In =



1 0 · · · 0
0 1 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

 .
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Fact 1: Given an m× n matrix A, we have

ImA = AIn = A.

Fact 2:

Am×nInBn×p = (AI)B = AB.

Fact 3:

(In)k = In.

Idempotent Matrices: A matrix A is said to be idempotent if AA = A.

Null Matrices: A null–or zero matrix–denoted by 0, plays the role of

the number 0. A null matrix is simply a matrix whose elements are all

zero. Unlike I , the zero matrix is not restricted to being square. Null

matrices obey the following rules of operation.

Am×n + 0m×n = Am×n;

Am×n0n×p = 0m×p;

0q×mAm×n = 0q×n.

Remark 4.5.1 (a) CD = CE does not imply D = E. For instance, for

C =

2 3
6 9

 , D =

1 1
1 2

 , E =

−2 1
3 2

 ,
we have

CD = CE =

 5 8
15 24

 ,
even though D ̸= E.

Then a question is: Under what condition, does CD = CE imply

D = E? We will show that it is so if C has the inverse that we will discuss
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shortly.

(b) Even if A and B ̸= 0, we can still have AB = 0. Again, we will see

this is not true if A or B has the inverse.

Example 4.5.1 A =

2 4
1 2

, B =

−2 4
1 −2

.

We have AB = 0.

4.6 Transposes and Inverses

The transpose of a matrix A is obtained by interchanging the rows and

columns of the matrix A, resulting in a matrix of size n×m. We define the

transpose of A as follows:

Formally, we have

Definition 4.6.1 A matrix B = [bij]n×m is said to be the transpose of A =
[aij]m×n if aji = bij for all i = 1, · · · , n and j = 1, · · · ,m.

Usually transpose is denoted by A′ or AT .

Recipe - How to Find the Transpose of a Matrix:

The transpose A′ of A is obtained by making the columns of A into the

rows of A′.

Example 4.6.1 For A =

3 8 −9
1 0 4

, its transpose is

A′ =


3 1
8 0

−9 4

 .

Thus, by definition, if the dimension of a matrix A is m × n, then the

dimension of its transpose A′ must be n×m.
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Example 4.6.2 For

D =


1 0 4
0 3 7
4 7 2

 ,
its transpose is:

D′ =


1 0 4
0 3 7
4 7 2

 = D.

Definition 4.6.2 A matrix A is said to be symmetric if A′ = A.

A matrix A is called anti-symmetric (or skew-symmetric) if A′ = −A.

A matrix A is called orthogonal if A′A = I .

Properties of Transposes:

a) (A′)′ = A;

b) (A + B)′ = A′ + B′;

c) (αA)′ = αA′ where α is a real number;

d) (AB)′ = B′A′.

The property d) states that the transpose of a product is the product of the

transposes in reverse order.

Inverses and Their Properties

For a given square matrix A, while its transpose A′ is always derivable, its

inverse matrix may or may not exist.

Definition 4.6.3 A matrix, denoted by A−1, is the inverse of A if the fol-

lowing conditions are satisfied:

(1) A is a square matrix;

(2) AA−1 = A−1A = I.
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If a square matrix A has an inverse, A is said to be nonsingular, where-

as if A has no inverse, it is said to be a singular matrix.

Here are some important properties of inverse matrices:

1. Not every square matrix has an inverse, and therefore, squareness

is a necessary, but not sufficient, condition for the existence of an

inverse.

2. If A is nonsingular, then A and A−1 are inverse of each other, i.e.,

(A−1)−1 = A.

3. If A is n× n, then A−1 is also n× n.

4. The inverse of A is unique.

Proof. Let B and C both be inverses of A. Then

B = BI = BAC = IC = C.

5. AA−1 = I implies that A−1A = I .

Proof. We need to show that if AA−1 = I , and if there is a matrix

B such that BA = I , then B = A−1. To see this, postmultiplying

both sides of BA = I by A−1, we have BAA−1 = A−1 and thus

B = A−1.

6. Suppose that A and B are nonsingular matrices with dimension n×
n.

(a) (AB)−1 = B−1A−1

(b) (A′)−1 = (A−1)′

It’s worth noting that while the transpose of a matrix always exists, the

inverse does not necessarily exist.
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Example 4.6.3 Let A =

3 1
0 2

 and B = 1
6

2 −1
0 3

. Then

AB =

3 1
0 2


2 −1
0 3

 1
6

=

6
6

 1
6

=

1
1

 .
So B is the inverse of A.

Inverse Matrix and Solution of Linear-Equation System

The application of the concept of inverse matrix to the solution of a simul-

taneous linear-equation system is immediate and direct. Consider

Ax = d.

If A is a nonsingular matrix, then premultiplying both sides of Ax = d

by A−1, we have

A−1Ax = A−1d.

So, x = A−1d is the solution of Ax = d, and furthermore, the solution is

unique since A−1 is unique. Methods of testing the existence of the inverse

and its calculation will be discussed in the next chapter.



Chapter 5

Linear Models and Matrix

Algebra (Continued)

In chapter 4, it was shown that a linear-equation system can be written in

a compact notation. Moreover, such an equation system can be solved by

finding the inverse of the coefficient matrix, provided the inverse exists.

This chapter studies how to test for the existence of the inverse, how to

find that inverse, and consequently gives ways of solving linear equation

systems.

5.1 Conditions for Nonsingularity of a Matrix

As pointed out earlier, the squareness condition is necessary but not suf-

ficient for the existence of the inverse A−1 of a matrix A. What are the

conditions for the existence of the inverse A−1 of a matrix A?

Conditions for Nonsingularity

When the squareness condition is already met, a sufficient condition for

the nonsingularity of a matrix is that its rows (or equivalently, its columns)

43
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are linearly independent. In fact, the necessary and sufficient conditions

for nonsingularity are that the matrix satisfies the squareness and linear

independence conditions.

To see this, write an n× n coefficient matrix A as an ordered set of row

vectors:

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · ·
an1 an2 · · · ann

 =



v′
1

v′
2

· · ·
v′
n


where v′

i = [ai1, ai2, · · · , ain], i = 1, 2, · · · , n. As we discussed in the pre-

vious chapter, for the rows of a matrix A to be linearly independent, for

any set of scalars ki,
∑n
i=1 kivi = 0 if and only if ki = 0 for all i, which is

equivalent to the homogeneous linear-equation system Ak = 0 having the

unique solution k = 0, where its transpose k′ = (k1, k2, . . . , kn).

This is true when A has the inverse, which is true if and only if the

matrix satisfies the squareness and linear independence conditions.

Example 5.1.1 For a given matrix,


3 4 5
0 1 2
6 8 10

 ,

since v′
3 = 2v′

1 + 0v′
2, so the matrix is singular.

Example 5.1.2 B =

1 2
3 4

 is nonsingular since their two rows are not

proportional.

Example 5.1.3 C =

−2 1
6 −3

 is singular their two rows are proportional.
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Rank of a Matrix

The above discussion on row linear independence are regard to square

matrices, it is equally applicable to any m× n rectangular matrix.

Definition 5.1.1 A matrix Am×n is said to be of rank γ if the maximum

number of linearly independent rows that can be found in such a matrix

is γ.

By definition, an n×n nonsingular matrix A has n linearly independent

rows (or columns); consequently it must be of rank n. Conversely, an n×n

matrix having rank n must be nonsingular.

5.2 Test of Nonsingularity by Use of Determi-

nant

To determine whether a square matrix is nonsingular by finding the in-

verse of the matrix is not an easy job. However, we can use the determi-

nant of the matrix to easily determine if a square matrix is nonsingular.

Determinant and Nonsingularity

The determinant of a square matrix A, denoted by |A|, is a uniquely

defined scalar associated with that matrix. Determinants are defined only

for square matrices. For a 2 × 2 matrix:

A =

a11 a12

a21 a22

 ,
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its determinant is defined as follows:

|A| =

∣∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣∣ = a11a22 − a12a21.

In view of the dimension of matrix A, |A| as defined in the above is

known as a second-order determinant.

Example 5.2.1 Given A =

10 4
8 5

 and B =

3 5
0 −1

, then

|A| =

∣∣∣∣∣∣∣
10 4
8 5

∣∣∣∣∣∣∣ = 50 − 32 = 18;

|B| =

∣∣∣∣∣∣∣
3 5
0 −1

∣∣∣∣∣∣∣ = −3 − 5 × 0 = −3.

Example 5.2.2 A =

2 6
8 24

. Then its determinant is

|A| =

∣∣∣∣∣∣∣
2 6
8 24

∣∣∣∣∣∣∣ = 2 × 24 − 6 × 8 = 48 − 48 = 0.

This example illustrates the fact that the determinant of a matrix is e-

qual to zero if and only if its rows are linearly dependent. As we will see,

the value of a determinant |A| can serve as a criterion for testing the linear

independence of the rows (hence nonsingularity) of matrix A, but it can

also be used as an input in the calculation of the inverse A−1, if it exists.
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Evaluating a Third-Order Determinant

For a 3 × 3 matrix A, its third-order determinants have the value

|A| =

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣∣∣− a12

∣∣∣∣∣∣∣
a21 a23

a31 a33

∣∣∣∣∣∣∣+ a13

∣∣∣∣∣∣∣
a21 a22

a31 a32

∣∣∣∣∣∣∣
= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

We can use the following diagram to calculate the third-order determi-

nant.

Figure 5.1: The graphic illustration for calculating the third-order determi-
nant.
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Example 5.2.3

∣∣∣∣∣∣∣∣∣∣
2 1 3
4 5 6
7 8 9

∣∣∣∣∣∣∣∣∣∣
= 2 × 5 × 9 + 1 × 6 × 7 + 4 × 8 × 3 − 3 × 5 × 7 − 1 × 4 × 9 − 6 × 8 × 2

= 90 + 42 + 96 − 105 − 36 − 96 = −9.

Example 5.2.4

∣∣∣∣∣∣∣∣∣∣
0 1 2
3 4 5
6 7 8

∣∣∣∣∣∣∣∣∣∣
= 0 × 4 × 8 + 1 × 5 × 6 + 3 × 7 × 2 − 2 × 4 × 6 − 1 × 3 × 8 − 5 × 7 × 0

= 0 + 30 + 42 − 48 − 24 − 0 = 0.

Example 5.2.5

∣∣∣∣∣∣∣∣∣∣
−1 2 1
0 3 2
1 0 2

∣∣∣∣∣∣∣∣∣∣
= −1 × 3 × 2 + 2 × 2 × 1 + 0 × 0 × 1 − 1 × 3 × 1 − 2 × 0 × 2 − 2 × 0 × (−1)

= −6 + 4 + 0 − 3 − 0 − 0 = −5.

The method of cross-diagonal multiplication provides a handy way of

evaluating a third-order determinant, but unfortunately it is not applicable

to determinants of orders higher than 3. For the latter, we must resort to

the so-called “Laplace expansion" of the determinant.

Evaluating an nth-Order Determinant by Laplace Expansion

The minor of the element aij of a determinant |A|, denoted by |Mij|,
can be obtained by deleting the ith row and jth column of the determinant

|A|.
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For instance, for a third determinant, the minors of a11, a12 and a13 are

|M11| =

∣∣∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣∣∣ , |M12| =

∣∣∣∣∣∣∣
a21 a23

a31 a33

∣∣∣∣∣∣∣ , |M13| =

∣∣∣∣∣∣∣
a21 a21

a31 a32

∣∣∣∣∣∣∣ .

A concept closely related to the minor is that of the cofactor. A cofactor,

denoted by Cij , is a minor with a prescribed algebraic sign attached to it.

Formally, it is defined by

|Cij| = (−1)i+j|Mij| =

 −|Mij| if i+ j is odd;
|Mij| if i+ j is even.

Thus, if the sum of the two subscripts i and j in Mij is even, then

|Cij| = |Mij|. If it is odd, then |Cij| = −|Mij|.

Using these new concepts, we can express a third-order determinant as

|A| = a11|M11| − a12|M12| + a13|M13|

= a11|C11| + a12|C12| + a13|C13|.

The Laplace expansion of a third-order determinant simplifies the eval-

uation problem by reducing it to the calculation of specific second-order

determinants. In a broader context, the Laplace expansion of an nth-order

determinant simplifies the task of evaluating n cofactors, each of which

is of order (n − 1). Repeatedly applying this process systematically de-

creases the order of determinants until eventually reaching the fundamen-

tal second-order determinants. At this point, the original determinant’s

value becomes straightforward to calculate.

Formally, the value of a determinant |A| of order n can be found by the
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Laplace expansion of any row or any column as follows:

|A| =
n∑
j=1

aij|Cij| [expansion by the ith row]

=
n∑
i=1

aij|Cij| [expansion by the jth column].

Even though one can expand |A| by any row or any column, as the

numerical calculation is concerned, a row or column with largest number

of 0’s or 1’s is always preferable for this purpose, because a 0 times its

cofactor is simply 0.

Example 5.2.6 For the |A| =

∣∣∣∣∣∣∣∣∣∣
5 6 1
2 3 0
7 −3 0

∣∣∣∣∣∣∣∣∣∣
, the easiest way to expand the

determinant is by the third column, which consists of the elements 1, 0,

and 0. Thus,

|A| = 1 × (−1)1+3

∣∣∣∣∣∣∣
2 3
7 −3

∣∣∣∣∣∣∣ = −6 − 21 = −27.

Example 5.2.7

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 1
0 0 2 0
0 3 0 0
4 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1 × (−1)1+4

∣∣∣∣∣∣∣∣∣∣
0 0 2
0 3 0
4 0 0

∣∣∣∣∣∣∣∣∣∣
= −1 × (−24) = 24.

A triangular matrix is a special type of square matrix. A square matrix

is called the lower triangular if all the entries above the main diagonal

are zero. Similarly, a square matrix is called the upper triangular if all the

entries below the main diagonal are zero.
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Example 5.2.8 (Upper Triangular Determinant) This example shows that

the value of an upper triangular determinant is the product of all elements

on the main diagonal.

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

0 a22 · · · a2n

· · · · · · · · · · · ·
0 0 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
= a11 × (−1)1+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

a22 a23 · · · a2n

0 a33 · · · a3n

· · · · · · · · · · · ·
0 0 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣

= a11 × a22 × (−1)1+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

a33 a34 · · · a3n

0 a44 · · · a4n

· · · · · · · · · · · ·
0 0 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
= · · · = a11 × a22 × ann.

5.3 Basic Properties of Determinants

Property I. The determinant of a matrix A has the same value as that of

its transpose A′, i.e.,

|A| = |A′|.

Example 5.3.1 For

|A| =

∣∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣∣ = ad− bc,

we have

|A′| =

∣∣∣∣∣∣∣
a c

b d

∣∣∣∣∣∣∣ = ad− bc = |A|.

Property II. The interchange of any two rows (or any two columns)

will alter the sign, but not the numerical value of the determinant.
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Example 5.3.2

∣∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣∣ = ad− bc, but the interchange of the two rows yields

∣∣∣∣∣∣∣
c d

a b

∣∣∣∣∣∣∣ = bc− ad = −(ad− bc).

Property III. The multiplication of any one row (or one column) by a

scalar k will change the value of the determinant k-fold, i.e., for |A|,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

· · · · · · · · · · · ·
kai1 kai2 · · · kain

· · · · · · · · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

· · · · · · · · · · · ·
ai1 ai2 · · · ain

· · · · · · · · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= k|A|.

In contrast, the factoring of a matrix requires the presence of a common

divisor for all its elements, as in

k



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · ·
an1 an2 · · · ann

 =



ka11 ka12 · · · ka1n

ka21 ka22 · · · ka2n

· · · · · · · · ·
kan1 kan2 · · · kann

 .

Property IV. The addition (subtraction) of a multiple of any row (or

column) to (from) another row (or column) will leave the value of the de-

terminant unaltered.

This is an extremely useful property, which can be used to greatly sim-

plify the computation of a determinant.
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Example 5.3.3

∣∣∣∣∣∣∣
a b

c+ ka d+ kb

∣∣∣∣∣∣∣ = a(d+ kb) − b(c+ ka) = ad− bc =

∣∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣∣ .

Example 5.3.4

∣∣∣∣∣∣∣∣∣∣∣∣∣

a b b b

b a b b

b b a b

b b b a

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a+ 3b b b b

a+ 3b a b b

a+ 3b b a b

a+ 3b b b a

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 b b b

1 a b b

1 b a b

1 b b a

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (a+ 3b)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 b b b

0 a− b 0 0
0 0 a− b 0
0 0 0 a− b

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (a+ 3b)(a− b)3.

The second determinant in the above equation is obtained by adding

the second column, the third column, and the fourth column to the first

column, respectively. The third determinant is obtained by taking out the

common factor (a + 3b) from the first column. The fourth determinant is

obtained by adding the negative of the first row to the second row, the

third row, and the fourth row in the second determinant, respectively. S-

ince the fourth determinant is upper triangular, its value is the product of

all elements on the main diagonal.
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Example 5.3.5 Similarly, we can compute the following example:

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

10 2 3 4
10 3 4 1
10 4 1 2
10 1 2 3

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

10 2 3 4
0 1 1 −3
0 2 −2 −2
0 −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)1+110

∣∣∣∣∣∣∣∣∣∣
1 1 −3
2 −2 −2

−1 −1 −1

∣∣∣∣∣∣∣∣∣∣
= 10

∣∣∣∣∣∣∣∣∣∣
1 1 −3
0 −4 4
0 0 −4

∣∣∣∣∣∣∣∣∣∣
= 160.

Example 5.3.6 Conpute the following determinant:

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2 5 −1 3
1 −9 13 7
3 −1 5 −5
2 8 −7 −10

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −13 25 17
1 −9 13 7
0 26 −34 −26
0 26 −33 −24

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)1+2

∣∣∣∣∣∣∣∣∣∣
−13 25 17
26 −34 −26
26 −33 −24

∣∣∣∣∣∣∣∣∣∣
= 13

∣∣∣∣∣∣∣∣∣∣
1 25 17

−2 −34 −26
−2 −33 −24

∣∣∣∣∣∣∣∣∣∣
= 13

∣∣∣∣∣∣∣∣∣∣
1 25 17
0 16 8
0 17 10

∣∣∣∣∣∣∣∣∣∣
= (−1)1+113

∣∣∣∣∣∣∣
16 8
17 10

∣∣∣∣∣∣∣ = 312.

In this calculation, the second determinant is obtained by adding 2 times

the second row to the first row, -3 times the second row to the third row,

and -2 times the second row to the fourth row. The third determinant is

obtained by expanding the first column. The fourth determinant is ob-

tained by factoring out -13 from the first column. The fifth determinant

is obtained by adding 2 times the first row to both the second and third

rows. The sixth determinant is obtained by expanding the first column.
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Property V. If one row (or column) is a multiple of another row (or

column), the value of the determinant will be zero.

Example 5.3.7 ∣∣∣∣∣∣∣
ka kb

a b

∣∣∣∣∣∣∣ = kab− kab = 0.

Remark 5.3.1 Property V is a logic consequence of Property IV.

Property VI. If A and B are both square matrices, then |AB| = |A||B|.

The aforementioned basic properties of determinants are useful in var-

ious ways. They can simplify the task of evaluating determinants. By

adding or subtracting multipliers of one row (or column) from another,

the elements of the determinant can be reduced to much simpler number-

s. If we apply these properties to transform some row or column into a

form containing mostly zeros or ones, Laplace expansion of the determi-

nant will become a much more manageable task.

Property VII. |A−1| = 1
|A| . As a consequence, if A−1 exists, we must

have |A| ≠ 0. The converse is also true.

Recipe - How to Calculate the Determinant:

1. The multiplication of any one row (or column) by a scalar k

will change the value of the determinant k-fold.

2. The interchange of any two rows (columns) will change the

sign but not the numerical value of the determinant.

3. If a multiple of any row is added to (or subtracted from)

any other row it will not change the value or the sign of

the determinant. The same holds true for columns (i.e. the

determinant is not affected by linear operations with rows

(or columns)).
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4. If two rows (or columns) are proportional, i.e., they are lin-

early dependent, then the determinant will vanish.

5. The determinant of a triangular matrix is a product of its

principal diagonal elements.

Using these rules, we can simplify the matrix (e.g., obtain as many zero

elements as possible) and then apply Laplace expansion.

Determinantal Criterion for Nonsingularity

Our primary concern here is to link the linear dependence of rows with

the vanishing of a determinant. By Property I, we can easily see that row

independence is equivalent to column independence.

Given a linear-equation system Ax = d, where A is an n×n coefficient

matrix, we have

|A| ̸= 0 ⇔ A is row (or column) independent

⇔ rank(A) = n

⇔ A is nonsingular

⇔ A−1 exists

⇔ a unique solution x̃ = A−1d exists.

Thus the value of the determinant of A provides a convenient criterion

for testing the nonsingularity of matrix A and the existence of a unique

solution to the equation system Ax = d.

Rank of a Matrix Redefined

The rank of a matrix A was earlier defined to be the maximum number

of linearly independent rows in A. In view of the link between row in-

dependence and the nonvanishing of the determinant, we can redefine the
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rank of an m × n matrix as the maximum order of a nonvanishing deter-

minant that can be constructed from the rows and columns of that matrix.

The rank of any matrix is a unique number.

Obviously, the rank can at most be m or n for a m × n matrix A,

whichever is smaller, because a determinant is defined only for a square

matrix. Symbolically, this fact can be expressed as follows:

γ(A) ≤ min{m,n}.

Example 5.3.8

γ


1 3 2
2 6 4

−5 7 1

 = 2

since

∣∣∣∣∣∣∣∣∣∣
1 3 2
2 6 4

−5 7 1

∣∣∣∣∣∣∣∣∣∣
= 0 and

∣∣∣∣∣∣∣
6 4
7 1

∣∣∣∣∣∣∣ ̸= 0.

One can also see this because the first two rows are linearly dependent,

but the last two are independent, therefore the maximum number of lin-

early independent rows is equal to 2.

Properties of the rank:

1) The column rank and the row rank of a matrix are equal.

2) rank(AB) ≤ min{rank(A); rank(B)}.

3) rank(A) = rank(AA′) = rank(A′A).

5.4 Finding the Inverse Matrix

If the matrix A in a linear-equation system Ax = d is nonsingular, then

A−1 exists, and the unique solution of the system will be x̄ = A−1d. We
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have learned to test the nonsingularity of A by the criterion |A| ̸= 0. The

next question is how we can find the inverse A−1 if A does pass that test.

Expansion of a Determinant by Alien Cofactors

We have known that the value of a determinant |A| of order n can be

found by the Laplace expansion of any row or any column as follows;

|A| =
n∑
j=1

aij|Cij| [expansion by the ith row]

=
n∑
i=1

aij|Cij| [expansion by the jth column]

Now what happens if we replace one row (or column) by another row

(or column), i.e., aij by ai′j for i ̸= i′ or by aij′ for j ̸= j′. Then we have the

following important property of determinants.

Property VIII. The expansion of a determinant by alien cofactors (the

cofactors of a “wrong" row or column) always yields a value of zero. That

is, we have

n∑
j=1

ai′j |Cij | = 0 (i ̸= i′) [expansion by the i′th row and use of cofactors of ith row]

n∑
j=1

aij′ |Cij | = 0 (j ̸= j′) [expansion by the j′th column and use of cofactors of jth column]

The reason for this outcome lies in the fact that the above formula can

be considered as the result of the regular expansion of a matrix that has

two identical rows or columns.
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Example 5.4.1 For the determinant

|A| =

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣∣
,

consider another determinant

|A∗| =

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a11 a12 a13

a31 a32 a33

∣∣∣∣∣∣∣∣∣∣
.

If we expand |A∗| by the second row, then we have

0 = |A∗| = a11|C21| + a12|C22| + a13|C23| =
3∑
j=1

a1j|C2j|.

Matrix Inversion

Property VIII provides a way of finding the inverse of a matrix. For a n×n

matrix A:

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · ·
an1 an2 · · · ann

 ,

since each element of A has a cofactor |Cij|, we can form a matrix of cofac-

tors by replacing each element aij with its cofactor |Cij|. Such a cofactor

matrix C = [|Cij|] is also n × n. For our present purpose, however, the

transpose of C is of more interest. This transpose C ′ is commonly referred
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to as the adjoint of A and is denoted by adj A. That is,

C ′ ≡ adj A ≡



|C11| |C21| · · · |Cn1|
|C12| |C22| · · · |Cn2|
· · · · · · · · · · · ·

|C1n| |C2n| · · · |Cnn|

 .

By utilizing the formula for the Laplace expansion and Property VI, we

have

AC ′ =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · ·
an1 an2 · · · ann





|C11| |C21| · · · |Cn1|
|C12| |C22| · · · |Cn2|
· · · · · · · · · · · ·

|C1n| |C2n| · · · |Cnn|



=



∑n
j=1 a1j|C1j|

∑n
j=1 a1j|C2j| · · · ∑n

j=1 a1j|Cnj|∑n
j=1 a2j|C1j|

∑n
j=1 a2j|C2j| · · · ∑n

j=1 a2j|Cnj|
· · · · · · · · · · · ·∑n

j=1 anj|C1j|
∑n
j=1 anj|C2j| · · · ∑n

j=1 anj|Cnj|



=



|A| 0 · · · 0
0 |A| · · · 0

· · · · · · · · · · · ·
0 0 · · · |A|


= |A|In.

Therefore, by the uniqueness of A−1 of A, we know

A−1 = C ′

|A|
= adj A

|A|
.

Now we have found a way to invert the matrix A.

Remark 5.4.1 In summary, the general procedures for finding the inverse
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of a square matrix A are:

1. Calculate the determinant |A|. If |A| = 0, then A is singular and has

no inverse.

2. Find the cofactor matrix C = [Cij] by calculating the cofactor Cij for

each element of A.

3. Obtain the adjugate matrix CT , which is the transpose of C.

4. Compute the inverse of A by using the formula A−1 = 1
|A|C

T .

5. Verify the result by computing the product AA−1, which should e-

qual the identity matrix I .

In particular, for a 2 × 2 matrix A =

a b

c d

, the cofactor matrix is:

C =

|C11| |C12|
|C21| |C22|

 =

 d −c
−b a

 .
Its transpose is:

C ′ =

 d −b
−c a

 .
Therefore, the inverse is given by

A−1 = adj A

|A|

= 1
ad− cb

 d −b
−c a

 ,
which is a very useful formula.
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Example 5.4.2 A =

3 2
1 0

 .
The inverse of A is given by

A−1 = 1
−2

 0 −2
−1 3

 =

0 1
1
2 −3

2

 .

Example 5.4.3 Find the inverse of B =


4 1 −1
0 3 2
3 0 7

.

Since |B| = 99 ̸= 0, B−1 exists. The cofactor matrix is

C =


|C11| |C12| |C13|
|C21| |C22| |C23|
|C31| |C32| |C33|



=


(−1)1+1|M11| (−1)1+2|M12| (−1)1+3|M13|
(−1)2+1|M21| (−1)2+2|M22| (−1)2+3|M23|
(−1)3+1|M31| (−1)3+2|M32| (−1)3+3|M33|



=



∣∣∣∣∣∣∣
3 2
0 7

∣∣∣∣∣∣∣ −

∣∣∣∣∣∣∣
0 2
3 7

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
0 3
3 0

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣
1 −1
0 7

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
4 −1
3 7

∣∣∣∣∣∣∣ −

∣∣∣∣∣∣∣
4 1
3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 −1
3 2

∣∣∣∣∣∣∣ −

∣∣∣∣∣∣∣
4 −1
0 2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
4 1
0 3

∣∣∣∣∣∣∣



=


21 6 −9
−7 31 3
5 −8 12

 .
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Then

adj B = C ′ =


21 −7 5
6 31 −8

−9 3 12

 .

Therefore, we have

B−1 = 1
99


21 −7 5
6 31 −8

−9 3 12

 .

Example 5.4.4 A =


2 4 5
0 3 0
1 0 1

.

We have |A| = −9 and

A−1 = −1
9


3 −4 −15
0 −3 0

−3 4 6

 .

5.5 Cramer’s Rule

The method of matrix inversion just discussed enables us to derive a con-

venient way of solving a linear equation system, known as Cramer’s rule.

Derivation of the Cramer’s Rule

Given a linear-equation system Ax = d, the solution can be written as

x̄ = A−1d = 1
|A|

(adj A)d
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provided A is nonsingular. Thus,

x̄ = 1
|A|



|C11| |C21| · · · |Cn1|
|C12| |C22| · · · |Cn2|
· · · · · · · · · · · ·

|C1n| |C2n| · · · |Cnn|





d1

d2

· · ·
dn



= 1
|A|



∑n
i=1 di|Ci1|∑n
i=1 di|Ci2|

· · ·∑n
i=1 di|Cin|

 .

That is, the x̄j is given by

x̄j = 1
|A|

n∑
i=1

di|Cij|

= 1
|A|



a11 a12 · · · d1 · · · a1n

a21 a22 · · · d2 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · dn · · · ann


= 1

|A|
|Aj|,

where |Aj| is obtained by replacing the jth column of |A| with constant

terms d1, · · · , dn. This result is the statement of Cramer’s rule.

Example 5.5.1 Let us solve

2 3
4 −1


x1

x2

 =

12
10


for x1, x2 using Cramer’s rule. Since

|A| = −14, |A1| = −42, |A2| = −28,
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we have

x1 = −42
−14

= 3, x2 = −28
−14

= 2.

Example 5.5.2

5x1 + 3x2 = 30;

6x1 − 2x2 = 8.

We then have

|A| =

∣∣∣∣∣∣∣
5 3
6 −2

∣∣∣∣∣∣∣ = −28;

|A1| =

∣∣∣∣∣∣∣
30 3
8 −2

∣∣∣∣∣∣∣ = −84;

|A2| =

∣∣∣∣∣∣∣
5 30
6 8

∣∣∣∣∣∣∣ = −140.

Therefore, by Cramer’s rule, we have

x̄1 = |A1|
|A|

= −84
−28

= 3 and x̄2 = |A2|
|A|

= −140
−28

= 5.

Example 5.5.3

x1 + x2 + x3 = 0

12x1 + 2x2 − 3x3 = 5

3x1 + 4x2 + x3 = −4.
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In the form of matrix


1 1 1
12 2 −3
3 4 1



x1

x2

x3

 =


0
5

−4

 .

We have

|A| = 35, |A3| = 35, and thus x3 = 1.

Example 5.5.4

7x1 − x2 − x3 = 0

10x1 − 2x2 + x3 = 8

6x1 + 3x2 − 2x3 = 7.

We have

|A| = −61, |A1| = −61, |A2| = −183, |A3| = −244.

Thus

x̄1 = |A1|
|A|

= 1,

x̄2 = |A2|
|A|

= 3,

x̄3 = |A3|
|A|

= 4.

Note on Homogeneous Linear-Equation System

A linear-equation system Ax = d is said to be a homogeneous-equation

system if d = 0, i.e., if Ax = 0. If |A| ̸= 0, x̄ = 0 is a unique solution of

Ax = 0 since x̄ = A−10 = 0. This is a "trivial solution." Thus, the only

way to get a nontrivial solution from the homogeneous-equation system
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is to have |A| = 0, i.e., A is singular. In this case, Cramer’s rule is not

directly applicable. Of course, this does not mean that we cannot obtain

solutions; it means only that the solution is not unique. In fact, it has an

infinite number of solutions.

If r(A) = k < n, we can delete n − k dependent equations from the

homogeneous-equation system Ax = 0, and then apply Cramer’s rule to

any k variables, say (x1, . . . , xk) whose coefficient matrix has a rank k and

constant term in equation i is −(ai,k+1xk+1 + . . . , ainxn).

Example 5.5.5

a11x1 + a12x2 = 0,

a21x2 + a22x2 = 0.

If |A| = 0, then its rows are linearly dependent. As a result, one of two

equations is redundant. By deleting, say, the second equation, we end up

with one equation with two variables. The solutions are

x̄1 = −a12

a11
x2 if a11 ̸= 0

For a linear-equation system with n variables and m equations, we

have the following proposition.

Proposition 5.5.1 A necessary and sufficient condition for the existence of solu-

tion for a linear-equation system Am×nx = d with n variables and m equations

is that the rank of A and the rank of the added matrix [A; d] are the same, i.e.,

r(A) = r([A; d]).
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Overview on Solution Outcomes for a linear-Equation System with Any

Number of Variables and Equations

For a general linear-equation system Ax = d, our discussion can be sum-

marized as in the following table.

|A|
d

d ̸= 0 d = 0

|A| ̸= 0 The solution is unique
and x̄ ̸= 0

The solution is unique
and x = 0

|A| = 0
Equations
dependent

An infinite number of
solutions and x̄ ̸= 0

There is an infinite
number of solutions

Equations
inconsistent No solution exists [Not Applicable]

Table 5.1: The summary of solution for linear-equation system Ax = d

5.6 Application to Market and National-Income

Models

Market Model:

The two-commodity model described in chapter 3 can be written as

follows:

c1P1 + c2P2 = −c0,

γ1P1 + γ2P2 = −γ0.

Thus

|A| =

∣∣∣∣∣∣∣
c1 c2

γ1 γ2

∣∣∣∣∣∣∣ = c1γ2 − c2γ1,

|A1| =

∣∣∣∣∣∣∣
−c0 c2

−γ0 γ2

∣∣∣∣∣∣∣ = c2γ0 − c0γ2,
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|A2| =

∣∣∣∣∣∣∣
c1 −c0

γ1 −γ0

∣∣∣∣∣∣∣ = c0γ1 − c1γ0.

Thus the equilibrium is given by

P̄1 = |A1|
|A|

= c2γ0 − c0γ2

c1γ2 − c2γ1

and

P̄2 = |A2|
|A|

= c0γ1 − c1γ0

c1γ2 − c2γ1
.

General Market Equilibrium Model:

Consider a market for three goods. The demand and supply for each

good are given by:

 D1 = 5 − 2P1 + P2 + P3,

S1 = −4 + 3P1 + 2P2.

 D2 = 6 + 2P1 − 3P2 + P3,

S2 = 3 + 2P2.

 D3 = 20 + P1 + 2P2 − 4P3,

S3 = 3 + P2 + 3P3,

where Pi is the price of good i; i = 1; 2; 3.

The equilibrium conditions are: Di = Si; i = 1; 2; 3 , resulting in the
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following three equations:


5P1 + P2 − P3 = 9,
−2P1 + 5P2 − P3 = 3,
−P1 − P2 + 7P3 = 17.

This system of linear equations can then be solved via Cramer’s rule

P̄1 = |A1|
|A|

= 356
178

= 2,

P̄2 = |A2|
|A|

= 356
178

= 2,

P̄3 = |A3|
|A|

= 534
178

= 3.

National-Income Model

Consider the simple national-income model:

Y = C + I0 +G0,

C = a+ bY (a > 0, 0 < b < 1).

These can be rearranged into the form

Y − C = I0 +G0,

−bY + C = a.

While we can solve Ȳ and C̄ by Cramer’s rule, here we solve this model

by inverting the coefficient matrix.

Since A =

 1 −1
−b 1

, then A−1 = 1
1−b

1 1
b 1

.
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Hence

[
Ȳ C̄

]
= 1

1 − b

1 1
b 1


I0 +G0

a


= 1

1 − b

 I0 +G0 + a

b(I0 +G0) + a

 .

5.7 Quadratic Forms

Quadratic Forms

Definition 5.7.1 A function q of n variables is called a quadratic form if it

has the following expression:

q(u1, u2, · · · , un) = d11u
2
1 + 2d12u1u2 + · · · + 2d1nu1un

+ d22u
2
2 + 2d23u2u3 + · · · + 2d2nu2un

· · ·

+ dnnu
2
n.

This is, it is a polynomial having only second-order terms (either the square

of a variable or the product of two variables).
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If we let dji = dij , i < j, then q(u1, u2, · · · , un) can be written as

q(u1, u2, · · · , un) = d11u
2
1 + d12u1u2 + · · · + d1nu1un

+ d12u2u1 + d22u
2
2 + · · · + d2nu2un

· · ·

+ dn1unu1 + dn2unu2 + · · · + dnnu
2
n

=
n∑
i=1

n∑
j=1

dijuiuj

= u′Du,

where

D =



d11 d12 · · · d1n

d21 d22 · · · d2n

· · · · · · · · · · · ·
dn1 dn2 · · · dnn

 ,

is called a matrix of quadratic form. Since dij = dji, D is an nth-order

symmetric square matrix.

Example 5.7.1 A quadratic form in two variables:

q = d11u
2
1 + d12u1u2 + d22u

2
2.

The symmetric matrix is  d11 d12/2
d12/2 d22

 .
Then we have q = u′Du.

Positive and Negative Definiteness:

Definition 5.7.2 Given a matrixA that represents a quadratic form q(u1, u2, · · · , un) =
uTAu:
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(a) q is positive definite (PD) if q(u) > 0 for all u ̸= 0;

(b) q is positive semidefinite (PSD) if q(u) = 0 for all u;

(c) q is negative definite (ND) if q(u) < 0 for all u ̸= 0;

(d) q is negative semidefinite (NSD) if q(u) 5 0 for all u.

(e) q is indefinite (ID) if it does not satisfy any of the above conditions.

We may also say that a matrix D, for instance, is positive definite if its

corresponding quadratic form q(u) = uTDu is positive definite.

Example 5.7.2

q = u2
1 + u2

2

is positive definite (PD),

q = (u1 + u2)2

is positive semidefinite (PSD), and

q = u2
1 − u2

2

is indefinite.

Determinantal Test for Sign Definiteness:

We state without proof that for the quadratic form q(u) = u′Du, the

necessary and sufficient condition for positive definiteness is the order of

the leading principal minors of |D|, namely,

|D1| = d11 > 0,

|D2| =

∣∣∣∣∣∣∣
d11 d12

d21 d22

∣∣∣∣∣∣∣ > 0,



74CHAPTER 5. LINEAR MODELS AND MATRIX ALGEBRA (CONTINUED)

· · ·

|Dn| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

d11 d12 · · · d1n

d21 d22 · · · d2n

· · · · · · · · · · · ·
dn1 dn2 · · · dnn

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

The corresponding necessary and sufficient condition for negative def-

initeness is that the order of the leading principal minors alternate in sign

as follows:

|D1| < 0, |D2| > 0, |D3| < 0, etc.

Two-Variable Quadratic Form

Example 5.7.3 Is q = 5u2 + 3uv + 2v2 either positive or negative definite?

The symmetric matrix is  5 1.5
1.5 2

 .
Since the order of the leading principal minors of |D| is |D1| = 5 and

|D2| =

∣∣∣∣∣∣∣
5 1.5

1.5 2

∣∣∣∣∣∣∣ = 10 − 2.25 = 7.75 > 0,

so q is positive definite.

Three-Variable Quadratic Form

Example 5.7.4 Determine whether

q = u2
1 + 6u2

2 + 3u2
3 − 2u1u2 − 4u2u3
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is positive or negative definite. The matrix D corresponding this quadratic

form is

D =


1 −1 0

−1 6 −2
0 −2 3

 ,
and the order of the leading principal minors of |D| are

|D1| = 1 > 0,

|D2| =

∣∣∣∣∣∣∣
1 −1

−1 6

∣∣∣∣∣∣∣ = 6 − 1 = 5 > 0,

and

|D3| =

∣∣∣∣∣∣∣∣∣∣
1 −1 0

−1 6 −2
0 −2 3

∣∣∣∣∣∣∣∣∣∣
= 11 > 0.

Thus, the quadratic form is positive definite.

Example 5.7.5 Determine whether

q = −3u2
1 − 3u2

2 − 5u2
3 − 2u1u2

is positive or negative definite. The matrix D corresponding this quadratic

form is

D =


−3 −1 0
−1 −3 0
0 0 −5

 .
Leading the order of the leading principal minors of D are

|D1| = −3 < 0,

|D2| = 8 > 0,
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|D3| = −40 < 0.

Therefore, the quadratic form is negative definite.

5.8 Eigenvalues and Eigenvectors

Consider the matrix equation:

Dx = λx.

Any number λ such that the equation Dx = λx has a non-zero vector-

solution x is called an eigenvalue (also known as a characteristic root)

of the matrix D. Any non-zero vector x satisfying the above equation is

called an eigenvector (also known as a characteristic vector) of D for the

eigenvalue λ.

Recipe - How to calculate eigenvalues:

From Dx = λx, we have the following homogeneous-equation system:

(D − λI)x = 0.

Since we require that x be non-zero, the determinant of (D−λI) should

vanish. Therefore all eigenvalues can be calculated as roots of the equa-

tion (which is often called the characteristic equation or the characteristic

polynomial of D)

|D − λI| = 0.

Example 5.8.1 Let

D =


3 −1 0

−1 3 0
0 0 5

 .
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|D − λI| =

∣∣∣∣∣∣∣∣∣∣
3 − λ −1 0
−1 3 − λ 0
0 0 5 − λ

∣∣∣∣∣∣∣∣∣∣
= (3 − λ)(3 − λ)(5 − λ) − (5 − λ)

= (5 − λ)(λ− 2)(λ− 4) = 0,

and therefore the eigenvalues are λ1 = 2, λ2 = 4, and λ3 = 5.

For λ1 = 2, we solve


3 − 2 −1 2
−1 3 − 2 0
0 0 5 − 2



x1

x2

x3

 =


0
0
0

 .

Thus, the eigenvector, corresponding to λ1 = 2, is v1 = c1(1, 1, 0)′, where

c1 is an arbitrary real constant. Similarly, for λ2 = 4 and λ3 = 5, we have

v2 = c2(1,−1, 0)′ and v3 = c3(1, 2, 0)′, respectively.

Properties of Eigenvalues:

Theorem 5.8.1 A symmetric matrix A is:

(1) Positive definite if and only if all its eigenvalues λi are positive for i =
1, 2, · · · , n.

(2) Negative definite if and only if all its eigenvalues λi are negative for i =
1, 2, · · · , n.

(3) Positive semi-definite if and only if all its eigenvalues λi are non-negative

for i = 1, 2, · · · , n.

(4) Negative semi-definite if and only if all its eigenvalues λi are non-positive

for i = 1, 2, · · · , n.
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(5) Indefinite if it has at least one positive eigenvalue and at least one negative

eigenvalue.

For a symmetric matrix A, there exists a convenient decomposition

method. Matrix A is said to be diagonalizable if there exist a non-singular

matrix P and a diagonal matrix D such that:

P−1AP = D.

A unitary matrix U is a complex square matrix such that its conjugate

transpose U∗ (also denoted by U ′) is equal to its inverse, i.e., UU∗ = U∗U =
I . For real matrices, a unitary matrix is the same as an orthogonal matrix

U where U ′ = U−1. “Orthogonal" implies that for any column vector u of

the matrix U , u′u = 1.

Theorem 5.8.2 (The Spectral Theorem for Symmetric Matrices) Suppose that

A is a real symmetric matrix of order n, and let λ1, . . . , λn be its eigenvalues. Then

there exists an orthogonal matrix U such that:

U−1AU =


λ1 0

. . .

0 λn


or equivalently:

A = U


λ1 0

. . .

0 λn

U ′.

Usually, U is the orthogonal matrix formed by eigenvectors. It has the

property U ′U = UU ′ = I .
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Example 5.8.2 Diagonalize the matrix

A =

1 2
2 4

 .
First, we need to find the eigenvalues:

∣∣∣∣∣∣∣
1 − λ 2

2 4 − λ

∣∣∣∣∣∣∣ = λ(λ− 5) = 0,

i.e., λ1 = 0 and λ2 = 5.

For λ1 = 0, we solve

1 − 0 2
2 4 − 0


x1

x2

 =

0
0

 .
The eigenvector, corresponding to λ1 = 0, is v1 = c1(2,−1)′, where C1

is an arbitrary real constant. Similarly, for λ2 = 5, we have v2 = c2(1, 2)′.

Let us normalize the eigenvectors, i.e. let us pick constants Ci such that

v′
ivi = 1. We get

v1 =
(

2√
5
,

−1√
5

)
, v2 =

(
1√
5
,

2√
5

)
.

Thus the diagonalization matrix U is

U =

 2√
5

1√
5

−1√
5

2√
5 .


You can easily check that

U−1AU =

0 0
0 5

 .
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The trace of a square matrix of order n is the sum of the n elements on

its principal diagonal, i.e., tr(A) = ∑n
i=1 aii.

Properties of the Trace:

(1) tr(A) = λ1 + · · · + λn;

(2) If A and B have the same dimension, then tr(A + B) =
tr(A) + tr(B);

(3) If a is a real number, tr(aA) = a · tr(A);

(4) tr(AB) = tr(BA), if AB is a square matrix;

(5) tr(A′) = tr(A);

(6) tr(A′A) = ∑n
i=1

∑n
j=1 a

2
ij .

Note that in property (1), the eigenvalues λ1, · · · , λn referred to are the

eigenvalues of A.

5.9 Vector Spaces

A (real) vector space is a nonempty set V of objects together with an addi-

tive operation + : V × V → V , +(u,v) = u + v and a scalar multiplicative

operation · : R× V → V , ·(a,u) = au which satisfies the following axioms

for any u,v,w ∈ V and any a, b ∈ R where R is the set of all real numbers:

1. (u + v) + w = u + (v + w);

2. u + v = v + u;

3. 0 + u = u;

4. u + (−u) = 0;

5. a(u + v) = au + av;
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6. (a+ b)u = au + bu;

7. a(bu) = (ab)u;

8. 1u = u.

The objects of a vector space V are called the vectors, the operations +
and · are called the vector addition and scalar multiplication, respectively.

The element 0 ∈ V is the zero vector and −v is the additive inverse of V .

Example 5.9.1 (The n-Dimensional Vector Space Rn) For Rn, consider u,v ∈
Rn, u = (u1, u2, · · · , un)′, v = (v1, v2, · · · , vn)′ and a ∈ R. Define the addi-

tive operation and the scalar multiplication as follows:

u + v = (u1 + v1, · · · , un + vn)′,

au = (au1, · · · , aun)′.

It is not difficult to verify that Rn together with these operations is a vector

space.

Let V be a vector space. An inner product or scalar product in V is

a function s : V × V → R, s(u,v) = u · v which satisfies the following

properties:

1. u · v = v · u,

2. u · (v + w) = u · v + u · w,

3. a(u · v) = (au) · v = u · (av),

4. u · u ≥ 0 and u · u = 0 iff u = 0.

Example 5.9.2 Let u,v ∈ Rn, u = (u1, u2, · · · , un)′, v = (v1, v2, · · · , vn)′.

Then u · v = u1v1 + · · · + unvn.
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Let V be a vector space and v ∈ V . The norm of magnitude is a func-

tion || · || : V → R defined as ||v|| =
√

v · v. For any v ∈ V and any a ∈ R,

we have the following properties:

1. ||au|| = |a|||u||;

2. ||u + v|| ≤ ||u|| + ||v||;

3. |u · v| ≤ ||u|| × ||v||.

The nonzero vectors u and v are parallel if there exists a ∈ R such that

u = av.

The vectors u and v are orthogonal or perpendicular if their scalar

product is zero, that is, if u · v = 0.

The angle between vectors u and v is arccos( uv
||u||||v||)

A nonempty subset S of a vector space V is a subspace of V if for any

u,v ∈ S and a ∈ R

u + v ∈ S and au ∈ S.

Example 5.9.3 V is a subset of itself. {0} is also a subset of V . These

subspaces are called proper subspaces.

Example 5.9.4 L = {(x, y)|y = mx + n} where m,n ∈ R and m ̸= 0 is a

subspace of R2.

Let u1,u2, · · · ,uk be vectors in a vector space V . The set S of all linear

combinations of these vectors

S = {a1u1 + a2u2 + · · · , akuk|a1, · · · , ak ∈ R}

is called the subspace generated or spanned by the vectors u1,u2, · · · ,uk

and denoted as sp(u1,u2, · · · ,uk). One can prove that S is a subspace of

V .



5.9. VECTOR SPACES 83

Example 5.9.5 Let u1 = (2,−1, 1)′, u2 = (3, 4, 0)′. Then the subspace of R3

generated by u1 and u2 is

sp(u1,u2) = {(2a+ 3b,−a+ 4b, a)′|a, b ∈ R}.

As we discussed in Chapter 4, a set of vectors {u1,u2, · · · ,uk} in a vec-

tor space V is linearly dependent if there exists the real numbers a1, a2, · · · , ak,

not all zero, such that a1u1 + a2u2 + · · · + akuk = 0. In other words, the

set of vectors in a vector space is linearly dependent if and only if one

vector can be written as a linear combination of the others. A set of vec-

tors {u1,u2, · · · ,uk} in a vector space V is linearly independent if it is not

linearly dependent.

Properties: Let {u1,u2, · · · ,uk} be n vectors in Rn. The following con-

ditions are equivalent:

i) The vectors are independent.

ii) The matrix having these vectors as columns is nonsingular.

iii) The vectors generate Rn.

A set of vectors {u1,u2, · · · ,uk} in V is a basis for V if it, first,

generates V , and, second, is linearly independent.

Example 5.9.6 Consider the following vectors in Rn. ei = (0, · · · , 0, 1, 0, · · · , 0)′,

where 1 is in the ith position, i = 1, · · · , n. The set En = {e1, e2, · · · , en}
forms a basis for Rn which is called the standard basis.

Let V be a vector space and B = {u1,u2, · · · ,uk} a basis for V . Since

B generates V , for any u ∈ V , there exists the real numbers x1, x2, · · · , xn
such that u = x1u1 + · · · + xnun. The column vector x = (x1, x2, · · · , xn)′

is called the vector of coordinates of u with respect to B.
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Example 5.9.7 Consider the vector space Rn with the standard basis En.

For any u = (u1, · · · , un)′, we can represent u as u = u1e1 + · · · + unen;

therefore, (u1, · · · , un)′ is the vector of coordinates of u with respect to En.

Example 5.9.8 Consider the vector space R2. Let us find the coordinate

vector of (−1, 2)′ with respect to the basis B = (1, 1)′, (2,−3)′ (i.e., find

(−1, 2)′
B). We have to solve for a, b such that (−1, 2)′ = a(1, 1)′ + b(2,−3)′.

Solving the system a+ 2b = −1 and a− 3b = 2, we find a = 1
5 and b = −3

5 .

Thus, (−1, 2)′
B = (1

5 ,−
3
5)′.

The dimension of a vector space V dim(V ) is the number of elements

in any basis for V .

Example 5.9.9 The dimension of the vector space Rn with the standard

basis En is n.

Let U and V be two vector spaces. A linear transformation of U into

V is a mapping T : U → V such that for any u,v ∈ U and any a, b ∈ R, we

have

T (au + bv) = aT (u) + bT (v).

Example 5.9.10 Let A be a m × n real matrix. The mapping T : Rn → Rm

defined by T (u) = Au is a linear transformation.

Properties:

Let U and V be two vector spaces, B = (b1, · · · , bn) a basis for U and

C = (c1, · · · , cm) a basis for V .

1. Any linear transformation T can be represented by an m ×
n matrix AT whose ith column is the coordinate vector of

T (bi) relative to C.
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2. If x = (x1, · · · , xn)′ is the coordinate vector of u ∈ U relative

to B and y = (y1, · · · , ym)′ is the coordinate vector of T (u)
relative to C, then T defines the following transformation

of coordinates:

y = ATx for any u ∈ U.

The matrix AT is called the matrix representation of T relative to bases

B and C.

Remark 5.9.1 Any linear transformation is uniquely determined by a trans-

formation of coordinates.

Example 5.9.11 Consider the linear transformation T : R3 → R2, T ((x, y, z)′) =
(x − 2y, x + z)′ and bases B = {(1, 1, 1)′, (1, 1, 0)′, (1, 0, 0)′} for R3 and

C = {(1, 1)′, (1, 0)′} for R2. How can we find the matrix representation

of T relative to bases B and C?

We have

T ((1, 1, 1)′) = (−1, 2), T ((1, 1, 0)′) = (−1, 1), T ((1, 0, 0)′) = (1, 1).

The columns of AT are formed by the coordinate vectors of T ((1, 1, 1)′),
T ((1, 1, 0)′), T ((1, 0, 0)′) relative to C. Applying the procedure developed

in Example 5.9.8, we find

AT =

 2 1 1
−3 −2 0

 .
Let V be a vector space of dimension n, B and C be two bases for V ,

and I : V → V be the identity transformation ((I(v) = v for all v ∈ V ). The

change-of-basis matrix D relative to B, C is the matrix representation of

I to B, C.
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Example 5.9.12 For u ∈ V , let x = (x1, · · · , xn)′ be the coordinate vector of

u relative to B and y = (y1, · · · , yn)′ is the coordinate vector of u relative

to C. If D is the change-of-basis matrix relative to B, C then y = Cx. The

change-of-basis matrix relative to C, B is D−1.

Example 5.9.13 Given the following bases for R2: B = {(1, 1)′, (1, 0)′} and

C = {(0, 1)′, (1, 1)′}, find the change-of-basis matrix D relative to B, C.

The columns of D are the coordinate vectors of (1, 1)′, (1, 0)′ relative to C.

Following Example 5.9.8, we find

D =

0 −1
1 1

 .



Chapter 6

Comparative Statics and the

Concept of Derivative

6.1 The Nature of Comparative Statics

Comparative statics is concerned with comparing different equilibrium s-

tates that are associated with different sets of values of parameters and ex-

ogenous variables. When the value of some parameter or exogenous vari-

able that is associated with an initial equilibrium changes, we will have a

new equilibrium. The question posed in the comparative-static analysis

is: How does the new equilibrium compare with the old?

It should be noted that in comparative-static analysis, we don’t concern

ourselves with the process of adjusting the variables; we merely compare

the initial (pre-change) equilibrium state with the new (post-change) equi-

librium state. We also preclude the possibility of instability of equilibrium

because we assume that the equilibrium is attainable.

It should be clear that the problem under consideration is essentially

one of finding a rate of change: the rate of change of the equilibrium value

of an endogenous variable with respect to the change in a particular pa-
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rameter or exogenous variable. For this reason, the mathematical concept

of derivative takes on significant importance in comparative statics.

6.2 Rate of Change and the Derivative

We want to study the rate of change of any variable y in response to a

change in another variable x, where the two variables are related to each

other by the function:

y = f(x).

In the comparative statics context, the variable y represents the equilib-

rium value of an endogenous variable, and x represents some parameter.

The Difference Quotient

We use the symbol ∆ to denote the change from one point, say x0, to

another point, say x1. Thus ∆x = x1 − x0. When x changes from an initial

value x0 to a new value x0 +∆x, the value of the function y = f(x) changes

from f(x0) to f(x0 + ∆x). The change in y per unit of change in x can be

represented by the difference quotient.

∆y
∆x

= f(x0 + ∆x) − f(x0)
∆x

.

Example 6.2.1 y = f(x) = 3x2 − 4.

Then f(x0) = 3x2
0 − 4, f(x0 + ∆x) = 3(x0 + ∆x)2 − 4,
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and thus,

∆y
∆x

= f(x0 + ∆x) − f(x0)
∆x

= 3(x0 + ∆x)2 − 4 − (3x2
0 − 4)

∆x

= 6x0∆x+ 3(∆x)2

∆x
= 6x0 + 3∆x.

The Derivative

Frequently, we are interested in the rate of change of y when ∆x is

very small. In particular, we want to know the rate of ∆y/∆x when ∆x
approaches to zero. If, as ∆x → 0, the limit of the difference quotient

∆y/∆x exits, that limit is called the derivative of the function y = f(x),
and the derivative is denoted by

dy

dx
≡ y′ ≡ f ′(x) ≡ lim

∆x→0

∆y
∆x

.

Remark 6.2.1 It is important to note several points about the derivative:

(1) The derivative is a function of x0 only, whereas the difference quo-

tient is a function of both x0 and ∆x.

(2) The derivative is a limit of the difference quotient and, therefore,

is a measure of some rate of change. As ∆x approaches zero, the rate

measured by the derivative represents an instantaneous rate of change.

Example 6.2.2 Referring to the function y = 3x2 − 4 again. Since

∆y
∆x

= 6x+ 3∆x,

we have dy
dx

= 6x.
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6.3 The Derivative and the Slope of a Curve

In elementary economics, the marginal cost MC of a total-cost function

C = f(Q), where C is the total cost and Q is the output, is defined as

MC = ∆C/∆Q, where ∆Q refers to an infinitesimal change. The marginal

cost MC is a continuous variable.

The slope of the total-cost curve is a well-known way to measure MC.

However, the slope of the total-cost curve is just the limit of the ratio

∆C/∆Q as ∆Q → 0. The concept of the slope of a curve is therefore the

geometric counterpart of the concept of the derivative.

Figure 6.1: Graphical illustrations of the slope of the total cost curve and
the marginal cost.
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6.4 The Concept of Limit

In the previous section, we defined the derivative of a function y = f(x) as

the limit of ∆y/∆x as ∆x → 0. We now turn our attention to the concept

of limit.

Given a function q = q(v), the concept of limit is concerned with the

value that q approaches as v approaches a specific value, denoted by N .

That is, we are interested in what happens to limv→N q as v approaches N ,

where N can be any number, such as N = 0, N = +∞, or N = −∞.

As v approaches N , the variable v can approach N either from values

greater than N or from values less than N . If q approaches a finite number

L as v → N from values less than N , we call L the left-side limit of q. Sim-

ilarly, we call L the right-side limit of q if v → N from values greater than

N . The left-side limit and right-side limit of q are denoted by limv→N− q

and limv→N+ q, respectively.

The limit of q at N exists if and only if the left-side limit and right-side

limit are equal. That is,

lim
v→N−

q = lim
v→N+

q,

and is denoted by limv→N q = L. Note that L must be a finite number. If

limv→N q = ∞ or −∞, we say that q has no limit or an infinite limit. It

is important to realize that the symbol ∞ is not a number, and therefore

cannot be subjected to the usual algebraic operations.

Graphical Illustrations

There are several possible situations regrading the limit of a function,

which are shown in the following diagrams.
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Figure 6.2: Possible Situations regarding the limit of a function q = g(v).

Evaluation of a Limit

Let us now illustrate the algebraic evaluation of a limit of a given function

q = g(v).

Example 6.4.1 Given q = 2 + v2, find limv→0 q. It is clear that limv→0− q = 2
and limv→0+ q = 2 and v2 → 0 as v → 0. Thus limv→0 q = 2.

Note that, in evaluating limv→N q, we only let v approach N but, as a

rule, do not let v = N . Indeed, sometimes N is not even in the domain of

the function q = g(v).
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Example 6.4.2 Consider

q = (1 − v2)/(1 − v).

For this function, N = 1 is not in the domain of the function, and we

cannot set v = 1 since it would involve division by zero. Moreover, even

the limit-evaluation procedure of letting v approach 1 will cause difficulty

since (1 − v) → 0 as v → 1.

One way out of this difficulty is to try to transform the given ratio to a

form in which v will not appear in the denominator. Since

q = 1 − v2

1 − v
= (1 − v)(1 + v)

1 − v
= 1 + v (v ̸= 1)

and v → 1 implies v ̸= 1 and (1 + v) → 2 as v → 1, we have limv→1 q = 2.

Example 6.4.3 Find limv→∞
2v+5
v+1 .

Since 2v+5
v+1 = 2(v+1)+3

v+1 = 2 + 3
v+1 and limv→∞

3
v+1 = 0, so limv→∞

2v+5
v+1 = 2.

Formal View of the Limit Concept

Definition 6.4.1 The number L is said to be the limit of q = g(v) as v

approaches N if, for every neighborhood of L, there can be found a corre-

sponding neighborhood of N (excluding the point v = N ) in the domain

of the function such that, for every value of v in that neighborhood, its im-

age lies in the chosen L-neighborhood. Here a neighborhood of a point L

is an open interval defined by

(L− a1, L+ a2) = {q|L− a1 < q < L+ a2} for a1 > a2 > 0
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Figure 6.3: The graphical representation of the limit defined in term of
neighborhoods.

6.5 Inequality and Absolute Values

Rules of Inequalities:

Transitivity:

a > b and b > c implies a > c;

a ≥ b and b ≥ c implies a ≥ c.

Addition and Subtraction:

a > b =⇒ a± k > b± k;

a ≥ b =⇒ a± k ≥ b± k.

Multiplication and Division:

a > b =⇒ ka > kb (k > 0);
a > b =⇒ ka < kb (k < 0).
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Squaring:

a > b with b ≥ 0 =⇒ a2 > b2.

Absolute Values and Inequalities

For any real number n, the absolute value of n is defined and denoted

by

|n| =


n if n > 0,
−n if n < 0,
0 if n = 0.

Thus we can write |x| < n as an equivalent way −n < x < n (n > 0).

Also |x| ≤ n if and only if −n ≤ x ≤ n (n > 0).

The following properties characterize absolute values:

1) |m| + |n| ≥ |m+ n|;

2) |m| · |n| = |m · n|;

3) |m|
|n| =

∣∣∣m
n

∣∣∣.

Solution of an Inequality

Example 6.5.1 Find the solution of the inequality 3x−3 > x+1. By adding

(3 − x) to both sides, we have

3x− 3 + 3 − x > x+ 1 + 3 − x.

Thus, 2x > 4 so x > 2.

Example 6.5.2 Solve the inequality |1 − x| ≤ 3.

From |1 − x| ≤ 3, we have −3 ≤ 1 − x ≤ 3, or −4 ≤ −x ≤ 2. Thus,

4 ≥ x ≥ −2, i.e., −2 ≤ x ≤ 4.
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6.6 Limit Theorems

Theorems Involving a Single Equation

Theorem I: If q = av + b, then limv→N q = aN + b.

Theorem II: If q = g(v) = b, then limv→N q = b.

Theorem III: limv→N v
k = Nk.

Example 6.6.1 Given q = 5v + 7, then limv→2 = 5 · 2 + 7 = 17.

Example 6.6.2 q = v3. Find limv→2 q.

By theorem III, we have limv→2 = 23 = 8.

Theorems Involving Two Functions

For two functions q1 = g(v) and q2 = h(v), if limv→N q1 = L1, limv→N q2 =
L2, then we have the following theorems:

Theorem IV: limv→N(q1 + q2) = L1 + L2.

Theorem V: limv→N(q1q2) = L1L2.

Theorem VI: limv→N
q1
q2

= L1
L2

(L2 ̸= 0).

Example 6.6.3 Find limv→0
1+v
2+v .

Since limv→0(1 + v) = 1 and limv→0(2 + v) = 2, so limv→0
1+v
2+v = 1

2 .

Remark 6.6.1 Note thatL1 andL2 represent finite numbers; otherwise the-

orems do not apply.

Limit of a Polynomial Function

lim
v→N

a0 + a1v + a2v
2 + · · · + anv

n = a0 + a1N + a2N
2 + · · · + anN

n.
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6.7 Continuity and Differentiability of a Func-

tion

Continuity of a Function

Definition 6.7.1 A function q = g(v) is said to be continuous atN if limv→N q

exists and limv→N g(v) = g(N).

Thus the term continuous involves no less than three requirements: (1)

the point N must be in the domain of the function; (2) limv→N g(v) exists;

and (3) limv→N g(v) = g(N).

Remark 6.7.1 It is important to note that while – in discussing the limit

of a function – the point (N,L) is excluded from consideration, we are no

longer excluding it in defining continuity at point N . Rather, as the third

requirement specifically states, the point (N,L) must be on the graph of

the function before the function can be considered as continuous at point

N .

Polynomial and Rational Functions

From the discussion of the limit of polynomial function, we know that

the limit exists and equals the value of the function at N . Since N is a

point in the domain of the function, we can conclude that any polynomial

function is continuous in its domain. By those theorems involving two

functions, we also know any rational function is continuous in its domain.

Example 6.7.1 q = 4v2

v2+1 .

Then

lim
v→N

4v2

v2 + 1
= limv→N 4v2

limv→N(v2 + 1)
= 4N2

N2 + 1
.
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Example 6.7.2 The rational function

q = v3 + v2 − 4v − 4
v2 − 4

is not defined at v = 2 and v = −2. Since v = 2,−2 are not in the domain,

the function is discontinuous at v = 2 and v = −2, despite the fact that its

limit exists as v → 2 or −2 by noting

q = v3 + v2 − 4v − 4
v2 − 4

= v(v2 − 4) + v2 − 4
v2 − 4

= (v + 1)(v2 − 4)
v2 − 4

= v + 1 (v ̸= 2,−2).

Differentiability Implies Continuity

By the definition of the derivative of a function y = f(x), we know that

f ′(x0) exists at x0 if the lim of ∆y/∆x exists at x = x0 as ∆x → 0, i.e.,

f ′(x0) = lim
∆x→0

∆y
∆x

≡ lim
∆x→0

f(x0 + ∆x) − f(x0)
∆x

(differentiability condition).

On the other hand, the function y = f(x) is continuous at x0 if and only

if

lim
x→x0

f(x) = f(x0) (continuity condition).

We want to know what is the relationship between the continuity and

differentiability of a function. Now we show the continuity of f is a nec-

essary condition for its differentiability. But this is not sufficient.

Since the notation x → x0 implies x ̸= x0, so x−x0 is a nonzero number,

it is permissible to write the following identity:

f(x) − f(x0) = f(x) − f(x0)
x− x0

(x− x0).
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Taking the limit of each side of the above equation as x → x0 yields the

following results:

Left side = lim
x→x0

(f(x) − f(x0)) = lim
x→x0

f(x) − f(x0).

Right side = lim
x→x0

f(x) − f(x0)
x− x0

lim
x→x0

(x− x0)

= f ′(x0) lim
x→x0

(x− x0) = 0.

Thus limx→x0 f(x) − f(x0) = 0. So limx→x0 f(x) = f(x0) which means

f(x) is continuous at x = x0.

Although differentiability implies continuity, the converse may not be

true. That is, continuity is a necessary, but not sufficient, condition for

differentiability. The following example shows this.

Example 6.7.3 f(x) = |x|.
This function is clearly continuous at x = 0. Now we show that it is

not differentiable at x = 0. This involves the demonstration of a disparity

between the left-side limit and the right-side limit. Since, in considering

the right-side limit x > 0, we have

lim
x→0+

f(x) − f(0)
x− 0

= lim
x→0+

x

x
= lim

x→0+
1 = 1.

On the other hand, in considering the left-side limit, x < 0; we have

lim
x→0−

f(x) − f(0)
x− 0

= lim
x→0−

|x|
x

= lim
x→0−

−x
x

= lim
x→0−

−1 = −1.

Thus, limx→0
∆y
∆x does not exist since the left-side limit and the right-

side limit are not the same, which implies that the derivative of y = |x|
does not exist at x = 0.
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Chapter 7

Rules of Differentiation and Their

Use in Comparative Statics

The central problem of comparative-static analysis is to find the rate of

change, which can be identified with finding the derivative of a function

y = f(x) when only a small change in x is being considered. To begin

our study of comparative-static models, let us first review some rules of

differentiation.

7.1 Rules of Differentiation for a Function of One

Variable

Constant-Function Rule

If y = f(x) = c, where c is a constant, then

dy

dx
≡ y′ ≡ f ′ = 0.

101
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Proof.

dy

dx
= lim

x′→x

f(x′) − f(x)
x′ − x

= lim
x′→x

c− c

x′ − x
=x′→x 0 = 0.

We can also write dy
dx

= df
dx

as

d

dx
y = d

dx
f.

So we may consider d/dx as an operator symbol.

Power-Function Rule

If y = f(x) = xa where a is any real number −∞ < a < ∞,

d

dx
f(x) = axa−1.

Remark 7.1.1 Note that:

(i) If a = 0, then
d

dx
x0 = d

dx
1 = 0.

(ii) If a = 1, then y = x. Thus

dx

dx
= 1.

For simplicity, we prove this rule only for the case where a = n, where

n is any positive integer. It can be verified that

xn − xn0 = (x− x0)(xn−1 + x0x
n−2 + x2

0x
n−3 + · · · + xn−1

0 ).

Then
xn − xn0
x− x0

= xn−1 + x0x
n−2 + x2

0x
n−3 + · · · + xn−1

0 .
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Therefore,

f ′(x0) = lim
x→x0

f(x) − f(x0)
x− x0

= lim
x→x0

xn − xn0
x− x0

= lim
x→x0

xn−1 + x0x
n−2 + x2

0x
n−3 + · · · + xn−1

0

= xn−1
0 + xn−1

0 + xn−1
0 + · · · + xn−1

0

= nxn−1
0 .

Example 7.1.1 Suppose y = f(x) = x−3. Then y′ = −3x−4.

Example 7.1.2 Suppose y = f(x) =
√
x. Then y′ = 1

2x
− 1

2 . In particular, we

can know that f ′(2) = 1
2 · 2− 1

2 =
√

2
4 .

Power-Function Rule Generalized

If the function is given by y = cxa, then

dy

dx
= df

dx
= acxa−1.

Example 7.1.3 Suppose y = 2x. Then

dy

dx
= 2x0 = 2.

Example 7.1.4 Suppose y = 4x3. Then

dy

dx
= 4 · 3x3−1 = 12x2.

Example 7.1.5 Suppose the function y = 3x−2. Then

dy

dx
= −6x−2−1 = −6x−3.
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Common Rules:

f(x) = constant ⇒ f ′(x) = 0;

f(x) = xa(a is constant) ⇒ f ′(x) = axa−1;

f(x) = ex ⇒ f ′(x) = ex;

f(x) = ax(a > 0) ⇒ f ′(x) = ax ln a;

f(x) = ln x ⇒ f ′(x) = 1
x

f(x) = loga x (a > 0; a ̸= 1) ⇒ f ′(x) = 1
x

loga e = 1
x ln a

;

f(x) = sin x ⇒ f ′(x) = cosx;

f(x) = cosx ⇒ f ′(x) = − sin x;

f(x) = tan x ⇒ f ′(x) = 1
cos2 x

;

f(x) = ctanx ⇒ f ′(x) = − 1
sin2 x

;

f(x) = arcsin x ⇒ f ′(x) = 1√
1 − x2

;

f(x) = arccos x ⇒ f ′(x) = − 1√
1 − x2

;

f(x) = arctan x ⇒ f ′(x) = 1
1 − x2 ;

f(x) = arcctanx ⇒ f ′(x) = − 1
1 − x2 .

7.2 Rules of Differentiation Involving Two or More

Functions of the Same Variable

Let f(x) and g(x) be two differentiable functions. We have the following

rules:
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Sum-Difference Rule:

d

dx
[f(x) ± g(x)] = d

dx
f(x) ± d

dx
g(x) = f ′(x) ± g′(x).

This rule can easily be extended to more functions:

d

dx

[
n∑
i=1

fi(x)
]

=
n∑
i=1

d

dx
fi(x) =

n∑
i=1

f ′
i(x).

Example 7.2.1 Consider the function ax2 + bx+ c. We have

d

dx
(ax2 + bx+ c) = 2ax+ b.

Example 7.2.2 Suppose that a short-run total-cost function is given by c =
Q3 − 4Q2 + 10Q + 75. Then the marginal-cost function is the limit of the

quotient ∆C/∆Q, or the derivative of the C function:

dC

dQ
= 3Q2 − 8Q+ 10.

In general, if a primitive function y = f(x) represents a total function,

then the derivative function dy/dx represents its marginal function. The

derivative of a function is the slope of its curve, so the marginal function

shows the slope of the curve of the total function at each point x.

L’Hopital’s Rule

We can use derivatives to find the limit of a continuous function when

both the numerator and denominator approach zero (or both approach

infinity). This is known as the L’Hopital’s rule, which states:

Theorem 7.2.1 (L’Hopital’s Rule) Suppose that f(x) and g(x) are differen-

tiable on an open interval (a, b), except possibly at c. If limx→c f(x) = limx→c g(x) =
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0 or limx→c f(x) = limx→c g(x) = ±∞, g′(x) ̸= 0 for all x in (a, b) with x ̸= c,

and limx→c
f ′(x)
g′(x)

exists, then

lim
x→c

f(x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.

Example 7.2.3 Consider the function

q = v3 + v2 − 4v − 4
v2 − 4

.

We have limv→2(v3 + v2 − 4v − 4) = 0 and limv→2(v2 − 4) = 0. By applying

L’Hopital’s Rule, we get

lim
v→2

v3 + v2 − 4v − 4
v2 − 4

= lim
v→2

d
dv

(v3 + v2 − 4v − 4)
d
dv

(v2 − 4)

= lim
v→2

3v2 + 2v − 4
2v

= 3.

Example 7.2.4 Consider the function

q = 4v + 5
v2 + 2v − 3

.

As limv→∞ 4v + 5 = ∞ and limv→∞ v2 + 2v − 3 = ∞, by L’Hopital Rule,

lim
v→∞

4v + 5
v2 + 2v − 3

= lim
v→∞

d
dv

(4v + 5)
d
dv

(v2 + 2v − 3)

= lim
v→∞

4
2v + 2

= 0.

Product Rule:

d

dx
[f(x)g(x)] = f(x) d

dx
g(x) + g(x) d

dx
f(x)

= f(x)g′(x) + g(x)f ′(x).
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Proof.

d

dx
[f(x0)g(x0)] = lim

x→x0

f(x)g(x) − f(x0)g(x0)
x− x0

= lim
x→x0

f(x)g(x) − f(x)g(x0) + f(x)g(x0) − f(x0)g(x0)
x− x0

= lim
x→x0

f(x)[g(x) − g(x0)] + g(x0)[f(x) − f(x0)]
x− x0

= lim
x→x0

f(x)g(x) − g(x0)
x− x0

+ lim
x→x0

g(x0)
f(x) − f(x0)

x− x0

= f(x0)g′(x0) + g(x0)f ′(x0).

Since this is true for any x = x0, this proves the rule.

Example 7.2.5 Suppose y = (2x+3)(3x2). Let f(x) = 2x+3 and g(x) = 3x2.

Then f ′(x) = 2, g′(x) = 6x. Hence,

d

dx
[(2x+ 3)(3x2)] = (2x+ 3)6x+ 3x2 · 2

= 12x2 + 18x+ 6x2

= 18x2 + 18x.

As an extension of the rule to the case of three functions, we have

d

dx
[f(x)g(x)h(x)] = f ′(x)g(x)h(x) + f(x)g′(x)h(x) + f(x)g(x)h′(x).

Finding Marginal-Revenue Function from Average-Revenue Function

Suppose that the average-revenue (AR) function is specified by

AR = 15 −Q.

The total-revenue (TR) function is

TR ≡ AR ·Q = 15Q−Q2.
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Then, the marginal-revenue (MR) function is given by

MR ≡ d

dQ
TR = 15 − 2Q.

In general, if AR = f(Q), then

TR ≡ AR ·Q = Qf(Q).

Thus

MR ≡ d

dQ
TR = f(Q) +Qf ′(Q).

From this, we can tell the relationship between MR and AR. Since

MR − AR = Qf ′(Q),

they will always differ the amount of Qf ′(Q). Also, since

AR ≡ TR

Q
= PQ

Q
= P,

we can view AR as the inverse demand function for the product of the

firm. If the market is perfectly competitive, i.e., the firm takes the price as

given, then P = f(Q) =constant. Hence f ′(Q) = 0. Thus MR − AR = 0
or MR = AR. Under imperfect competition, on the other hand, the AR

curve is normally downward-sloping, so that f ′(Q) < 0. Thus MR < AR.

Quotient Rule

d

dx

[
f(x)
g(x)

]
= f ′(x)g(x) − f(x)g′(x)

g2(x)
.

We will come back to prove this rule after learning the chain rule.
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Example 7.2.6

d

dx

[2x− 3
x+ 1

]
= 2(x+ 1) − (2x− 3)(1)

(x+ 1)2 = 5
(x+ 1)2 .

d

dx

[ 5x
x2 + 1

]
= 5(x2 + 1) − 5x(2x)

(x2 + 1)2 = 5(1 − x2)
(x2 + 1)2 .

d

dx

[
ax2 + b

cx

]
= 2ax(cx) − (ax2 + b)c

(cx)2 = c(ax2 − b)
(cx)2 = ax2 − b

cx2 .

Relationship Between Marginal-Cost and Average-Cost Functions

As an economic application of the quotient rule, let us consider the rate

of change of average cost when output varies.

Given a total cost function C = C(Q), the average cost (AC) function

and the marginal-cost (MC) function are given by

AC ≡ C(Q)
Q

(Q > 0),

and

MC ≡ C ′(Q).

The rate of change of AC with respect to Q can be found by differenti-

ating AC:

d

dQ
AC(Q) = d

dQ

[
C(Q)
Q

]

= C ′(Q)Q− C(Q)
Q2

= 1
Q

[
C ′(Q) − C(Q)

Q

]

= 1
Q

[MC(Q) − AC(Q)] .
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Figure 7.1: Graphical representation of relationship between marginal-cost
and average-cost functions

From this it follows that, for Q > 0, we have:

d

dQ
AC > 0 iff MC(Q) > AC(Q);

d

dQ
AC = 0 iff MC(Q) = AC(Q);

d

dQ
AC < 0 iff MC(Q) < AC(Q).

7.3 Rules of Differentiation Involving Functions

of Different Variables

Now we consider cases where there are two or more differentiable func-

tions, each of which has a distinct independent variable.
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Chain Rule

If we have a function z = f(y), where y is in turn a function of another

variable x, say, y = g(x), then the derivative of z with respect to x is given

by Chain Rule:
dz

dx
= dz

dy
· dy
dx

= f ′(y)g′(x).

The chain rule appeals easily to intuition. Given a ∆x, there must result

in a corresponding ∆y via the function y = g(x), but this ∆y will in turn

being about a ∆z via the function z = f(y).

Proof. Note that

dz

dx
= lim

∆x→0

∆z
∆x

= lim
∆x→0

∆z
∆y

∆y
∆x

.

Since ∆x → 0 implies ∆y → 0 which in turn implies ∆z → 0, we then

have
dz

dx
= dz

dy
· dy
dx

= f ′(y)g′(x). Q.E.D.

In view of the function y = g(x), we can express the function z = f(y)
as z = f(g(x)), where the contiguous appearance of the two function sym-

bols f and g indicates that this is a compose function (function of a func-

tion). So sometimes, the chain rule is also known as the composite func-

tion rule.

As an application of this rule, we use it to prove the quotient rule.

For z = 1
g(x) , let y = g(x). Then z = 1

y
= y−1 and thus by the chain rule,

we have
dz

dx
= dz

dy
· dy
dx

= − 1
y2 g

′(x) = − g′(x)
g2(x)

.
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Therefore, we have:

d

dx

[
f(x)
g(x)

]
= d

dx
[f(x) · g−1(x)]

= f ′(x)g−1(x) + f(x) d
dx

[g−1(x)]

= f ′(x)g−1(x) + f(x)
[
− g(x)
g2(x)

]

= f ′(x)g(x) − f(x)g′(x)
g2(x)

. Q.E.D.

Example 7.3.1 If z = 3y2 and y = 2x+ 5, then

dz

dx
= dz

dy

dy

dx
= 6y(2) = 12y = 12(2x+ 5).

Example 7.3.2 If z = y − 3 and y = x3, then

dz

dx
= dz

dy

dy

dx
= 1 · 3x2 = 3x2.

The usefulness of this rule can best be appreciated when one must dif-

ferentiate a function such as those below.

Example 7.3.3 z = (x2 + 3x− 2)17. Let z = y17 and y = x2 + 3x− 2.

dz

dx
= dz

dy

dy

dx
= 17y16 · (2x+ 3)

= 17(x2 + 3x− 2)16(2x+ 3).

Once being familiar with the chain rule, it is unnecessary to adopt in-

termediate variables to find the derivative of a function.

We can find the derivative of a more general function by applying the

chain rule repeatedly.
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Example 7.3.4 z = [(x3 − 2x+ 1)3 + 3x]−2. Applying the chain rule repeat-

edly, we have.

dz

dx
= −2[(x3 − 2x+ 1)3 + 3x]−3[3(x3 − 2x+ 1)2(3x2 − 2) + 3].

Example 7.3.5 Suppose TR = f(Q), where output Q is a function of labor

input L, or Q = g(L). Then, by the chain rule, the marginal revenue

product of labor (MRPL) is

MRPL = dR

dL
= dR

dQ

dQ

dL
= f ′(Q)g′(L) = MR ·MPL,

whereMRPL is marginal physical product of labor. Thus the result shown

above constitutes the mathematical statement of the well-known result in

economics that MRPL = MR ·MPL.

Inverse-Function Rule

Assume y = f(x) is a one-to-one mapping, i.e., the function with a differ-

ent value of x will always yield a different value of y. Then the function f

will have an inverse function x = f−1(y), where the symbol f−1 is a func-

tion symbol which signifies a function related to the function f ; it does not

mean the reciprocal of the function f(x). When x and y refer specifically

to numbers, the property of one-to-one mapping is unique to the class of

functions known as monotonic functions.

Definition 7.3.1 A function f is said to be monotonically increasing (de-

creasing) if x1 > x2 implies f(x1) > f(x2) (resp. f(x1) < f(x2)).

In either of these cases, an inverse function f−1 exists.

A practical way of ascertaining the monotonicity of a given function

y = f(x) is to check whether f ′(x) always adheres to the same algebraic
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sign for all values of x. Geometrically, this means that the slope of the

function is either always upward or always downward.

Example 7.3.6 Suppose y = 5x + 25. Since y′ = 5 for all x, the function

is monotonic and thus the inverse function exists. In fact, it is given by

x = 1
5(y − 25).

If an inverse function exists, the original and the inverse functions must

both be monotonic. Moreover, if f−1 is the inverse function of f , then f

must be the inverse function of f−1.

In general, we may not have an explicit expression for the inverse func-

tion. However, we can easily find the derivative of an inverse function by

using the following inverse function rule:

dx

dy
= 1

dy
dx

.

Proof:
dx

dy
= lim

∆y→0

∆x
∆y

= lim
∆x→0

1
∆y
∆x

= 1
y′

by noting that ∆y → 0 implies ∆x → 0.

Example 7.3.7 Suppose y = x5 + x. Then

dx

dy
= 1

dy
dx

= 1
5x4 + 1

.

Example 7.3.8 Given y = ln x, its inverse is x = ey. Therefore, by the

inverse-function rule, we have

dx

dy
= 1
dy/dx

= 1
1/x

= x = ey.
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7.4 Integration (The Case of One Variable)

Let f(x) be a continuous function. The indefinite integral of f (denoted by∫
f(x)dx) is defined as

∫
f(x)dx = F (x) + C,

where F (x) is such that F ′(x) = f(x), and C is an arbitrary constant.

Rules of Integration

•
∫
[af(x) + bg(x)]dx = a

∫
f(x)dx + b

∫
g(x)dx, where a and b are con-

stants (linearity of the integral);

•
∫
f ′(x)g(x)dx = f(x)g(x) −

∫
f(x)g′(x)dx (integration by parts);

•
∫
f(u(t))du

dt
dt =

∫
f(u)du (integration by substitution).

Some Special Rules of Integration:

∫ f ′(x)
f(x)

dx = ln |f(x)| + C;∫ 1
x
dx = ln |x| + C;∫

exdx = ex + C;∫
f ′(x)ef(x)dx = ef(x) + C;∫
xadx = xa+1

a+ 1
+ C, a ̸= −1;∫

axdx = ax

ln a
+ C, a > 0.



116CHAPTER 7. RULES OF DIFFERENTIATION AND THEIR USE IN COMPARATIVE STATICS

Example 7.4.1

∫ x2 + 2x+ 1
x

dx =
∫
xdx+

∫
2dx+

∫ 1
x
dx = x2

2
+ 2x+ ln |x| + C.

Example 7.4.2

∫
xe−x2

dx = −1
2

∫
(−2x)e−x2

dx = −1
2

∫
e−zdz = −e−x2

2
+ C.

Example 7.4.3

∫
xexdx = xex −

∫
exdx = xex − ex + C.

Definition 7.4.1 (The Newton-Leibniz formula) The definite integral of

a continuous function f is

∫ b

a
f(x)dx = F (x)|ba = F (b) − F (a)

for F (x) such that F ′(x) = f(x) for all x ∈ [a, b].

Remark 7.4.1 The indefinite integral is a function. The definite integral is

a number.
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Properties of Definite Integrals:

∫ b

a
[αf(x) + βg(x)]dx = α

∫ b

a
f(x)dx+ β

∫ b

a
g(x)dx;∫ b

a
f(x)dx = −

∫ a

b
f(x)dx;∫ a

a
f(x)dx = 0;∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx;∣∣∣∣∣

∫ b

a
f(x)dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)|dx;

∫ b

a
f(x)g′(x)dx =

∫ g(b)

g(a)
f(u)du, u = g(x) (change of variable);∫ b

a
f ′(x)g(x)dx = f(x)g(x)|ba −

∫ b

a
f(x)g′(x)dx,

where a, b, c, α, β are real numbers.

Some More Useful Results:

d

dλ

∫ b(λ)

a(λ)
f(x)dx = f(b(λ))b′(λ) − f(a(λ))a′(λ).

Example 7.4.4
d

dx

∫ x

a
f(t)dt = f(x).

7.5 Partial Differentiation

So far, we have considered only the derivative of functions of a single in-

dependent variable. However, in many economic models, several param-

eters appear, and the equilibrium value of each endogenous variable may
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be a function of more than one parameter. Therefore, we now consider the

derivative of a function of more than one variable.

Partial Derivatives

Consider a function

y = f(x1, x2, · · · , xn),

where the variables xi (i = 1, 2, · · · , n) are all independent of each other,

so that each can vary by itself without affecting the others. If the variable

xi changes by ∆xi while the other variables remain fixed, there will be a

corresponding change in y, namely, ∆y. The difference quotient in this

case can be expressed as

∆y
∆xi

= f(x1, x2, · · · , xi−1, xi + ∆xi, xi, · · · , xn) − f(x1, x2, · · · , xn)
∆xi

.

If we take the limit of ∆y/∆xi, that limit will constitute a derivative.

We call it the partial derivative of y with respect to xi. The process of tak-

ing partial derivatives is called partial differentiation. Denote the partial

derivative of y with respect to xi by ∂y
∂xi

, i.e.,

∂y

∂xi
= lim

∆xi→0

∆y
∆xi

.

We can use fi to denote ∂y/∂xi. If the function happens to be written

in terms of unsubscripted variables, such as y = f(u, v, w), one also uses

fu, fv, and fw to denote the partial derivatives.

Partial differentiation differs from the previously discussed differ-

entiation primarily in that we must hold the other independent variables

constant while allowing one variable to vary.
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Example 7.5.1 Suppose that y = f(x1, x2) = 3x2
1 + x1x2 + 4x2

2. Find ∂y/∂x1

and ∂y/∂x2.
∂y

∂x1
≡ ∂f

∂x1
= 6x1 + x2;

∂y

∂x2
≡ ∂f

∂x2
= x1 + 8x2.

Example 7.5.2 For y = f(u, v) = (u+ 4)(3u+ 2v), we have

∂y

∂u
≡ fu = (3u+ 2v) + (u+ 4) · 3

= 6u+ 2v + 12;

∂y

∂v
≡ fv = 2(u+ 4).

When u = 2 and v = 1, then fu(2, 1) = 26 and fv(2, 1) = 12.

Example 7.5.3 Given y = (3u− 2v)/(u2 + 3v),

∂y

∂u
= 3(u2 + 3v) − (3u− 2v)(2u)

(u2 + 3v)2 = −3u2 + 4uv + 9v
(u2 + 3v)2 ;

and
∂y

∂v
= −2(u2 + 3v) − (3u− 2v) · 3

(u2 + 3v)2 = −u(2u+ 9)
(u2 + 3v)2 .

Example 7.5.4 Given utility function u = xayb (a > 0 and b > 0), find MUx

(the marginal utility of x), MUy (the marginal utility of y), and MRSxy (the

marginal rate of substitution of x for y):

MUx = ∂u

∂x
= axa−1yb;

MUy = ∂u

∂y
= bxayb−1;

and

MRSxy = MUx
MUy

= axa−1yb

bxayb−1 = ay

bx
.
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7.6 Applications to Comparative-Static Analysis

By understanding the different rules of differentiation, we can now ad-

dress the issue posed in comparative-static analysis, which is how changes

in exogenous variables or parameters affect the equilibrium value of an

endogenous variable.

Market Model

For the one-commodity market model:

Qd = a− bp (a, b > 0);

Qs = −c+ dp (c, d > 0),

the equilibrium price and quantity are given by

p̄ = a+ c

b+ d
;

Q̄ = ad− bc

b+ d
.

We can refer to the solutions obtained as the reduced form since the

expressions for the two endogenous variables are now explicit functions

of the four independent variables, a, b, c, and d.

To determine the impact of a small change in one of the parameters

on the value of p̄ or Q̄, we only need to find the partial derivatives. If we

can determine the sign of a partial derivative, we can identify the direc-

tion in which p̄ will move when a parameter changes. This represents a

qualitative conclusion. If we can determine the magnitude of the partial

derivative, we can draw a quantitative conclusion.

It is important to distinguish between the two derivatives, such as

∂Q̄/∂a and ∂Qd/∂a. The latter derivative is appropriate for the demand
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function alone, without considering the supply function. The derivative

∂Q̄/∂a, however, reflects the equilibrium quantity that considers the in-

teraction of both demand and supply. To emphasize this distinction, we

refer to the partial derivatives of p̄ and Q̄ with respect to the parameters as

comparative-static derivatives.

Figure 7.2: The graphical illustration of comparative statics: (a) increase in
a; (b) increase in b; (c) increase in c, and (d) increase in d.
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For instance, for p̄, we have

∂p̄

∂a
= 1
b+ d

> 0;

∂p̄

∂b
= − a+ c

(b+ d)2 < 0;

∂p̄

∂c
= 1
b+ d

> 0;

∂p̄

∂d
= − a+ c

(b+ d)2 < 0.

National-Income Model

Y = C + I0 +G0 (equilibrium condition);

C = α + β(Y − T ) (α > 0; 0 < β < 1);

T = γ + δY (γ > 0; 0 < δ < 1),

where the endogenous variables are the national income Y , consumption

C, and taxes T . The equilibrium income (in reduced form) is

Ȳ = α− βγ + I0 +G0

1 − β + βδ
.

Thus,

∂Ȳ

∂G0
= 1

1 − β + βδ
> 0 (the government-expenditure multiplier);

∂Ȳ

∂γ
= −β

1 − β + βδ
< 0;

∂Ȳ

∂δ
= −β(α− βγ + I0 +G0)

(1 − β + βδ)2 = −βȲ
(1 − β + βδ)

< 0.
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7.7 Note on Jacobian Determinants

Partial derivatives can also provide a means of testing whether there exists

functional (linear or nonlinear) dependence among a set of n variables.

This is related to the notion of Jacobian determinants.

Consider n differentiable functions in n variables not necessary linear.

y1 = f 1(x1, x2, · · · , xn);

y2 = f 2(x1, x2, · · · , xn);

· · · ;

yn = fn(x1, x2, · · · , xn),

where the symbol f i denotes the ith function, we can derive a total of n2

partial derivatives.

∂yi
∂xj

(i = 1, 2, · · · , n; j = 1, 2, · · · , n).

We can arrange them into a square matrix, known as the Jacobian ma-

trix and denoted by J , and then take its determinant, the result will be

what is known as a Jacobian determinant (or a Jacobian, for short), denot-

ed by |J |:

|J | =
∣∣∣∣∣ ∂(y1, y2, · · · , yn)
∂(x1, x2, · · · , xn)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

· · · · · · · · · · · ·
∂yn

∂x1

∂yn

∂x2
· · · ∂yn

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Example 7.7.1 Consider two functions:

y1 = 2x1 + 3x2;
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y2 = 4x2
1 + 12x1x2 + 9x2

2.

Then the Jacobian determinant is

|J | =

∣∣∣∣∣∣∣
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
2 3

(8x1 + 12x2) (12x1 + 18x2)

∣∣∣∣∣∣∣ = 0 for all x.

A useful test for determining the existence of functional dependence

among a set of n functions is the Jacobian determinant. The following

theorem provides a formal statement of this test:

Theorem 7.7.1 The n functions f 1, f 2, · · · fn are functionally dependent (either

linearly or nonlinearly) if and only if the Jacobian determinant |J | is identically

zero for all x = (x1, x2, · · · , xn).

This theorem implies that if the Jacobian determinant is non-zero for at

least one x, then the functions f 1, f 2, · · · fn are functionally independent

at that point. Conversely, if the Jacobian determinant is identically zero,

then the functions are functionally dependent for all possible values of

x1, x2, · · · , xn.

For the above example, since

|J | =
∣∣∣∣∣ ∂(y1, y2)
∂(x1, x2)

∣∣∣∣∣ = (24x1 + 36x2) − (24x1 + 36x2) ≡ 0

for all x1 and x2, then y1 and y2 are functionally dependent. In fact, y2 is

simply y1 squared.

Let us now consider the special case of linear functions. We have ear-

lier shown that the rows of the coefficient matrix A of a linear-equation

system: Ax = d, i.e.,

a11x1 + a12x2 + · · · + a1nxn = d1;
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a21x1 + a22x2 + · · · + a2nxn = d2;

· · · ;

an1x1 + an2x2 + · · · + annxn = dn.

We can interpret the fact that the rows of the coefficient matrix A are

linearly dependent if and only if |A| = 0 as a special application of the

Jacobian criterion of functional dependence.

To see this, we can treat each equation in Ax = d as a separate function

of the n variables x1, x2, · · · , xn and denote these functions by y1, y2, · · · , yn.

Then, we have ∂yi/∂xj = aij . With this in mind, the elements of |J | are pre-

cisely the elements of A, i.e., |J | = |A|. Hence, the Jacobian criterion of

functional dependence among y1, y2, · · · , yn is equivalent to the criterion

|A| = 0 in the present linear case.
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Chapter 8

Comparative-Static Analysis of

General Functions

The study of partial derivatives has enabled us, in the preceding chap-

ter, to handle the simple type of comparative-static problems in which the

equilibrium solution of the model can be explicitly stated in reduced for-

m. We note that the definition of the partial derivative requires the absence

of any functional relationship among the independent variables. As applied

to comparative-static analysis, this means that parameters and/or exoge-

nous variables that appear in the reduced-form solution must be mutually

independent.

However, we cannot expect such expediency when, due to the inclu-

sion of general functions in a model, no explicit reduced-form solution can

be obtained. In such a case, we must find the comparative-static deriva-

tives directly from the originally given equations in the model. For ex-

ample, consider a simple national income model with two endogenous

variables, Y and C:

Y = C + I0 +G0 (equilibrim condition);

127
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C = C(Y, T0) (T0 : exogenous taxes),

which reduces to a single equation

Y = C(Y, T0) + I0 +G0

to be solved for Ȳ . We must, therefore, find the comparative-static deriva-

tives directly from this equation. How might we approach the problem?

Let us assume that there exists an equilibrium solution, denoted by Ȳ .

We can express this equilibrium as a function of the exogenous variables

I0, G0, and T0:

Ȳ = Ȳ (I0, G0, T0),

although we may not be able to determine the exact form of this function.

Moreover, in a neighborhood of Ȳ , we can write the following equality:

Ȳ ≡ C(Ȳ , T0) + I0 +G0,

where C is a function that depends on Ȳ and T0. Note that since Ȳ is

a function of T0, the two arguments of the C function are not indepen-

dent. This means that T0 can affect C not only directly but also indirectly

through its effect on Ȳ . Therefore, partial differentiation is not appropriate

in this case, and we need to use total differentiation instead. Total differ-

entiation can lead us to the concept of total derivative, which allows us to

analyze functions where the arguments are not all independent, and study

the comparative statics of general function models.

8.1 Differentials

The symbol dy/dx has been regarded as a single entity. We shall now rein-

terpret as a ratio of two quantities, dy and dx.
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Differentials and Derivatives

Given a function y = f(x), we can use the difference quotient ∆y/∆x
to represent the ratio of change of y with respect to x. Since

∆y ≡
[

∆y
∆x

]
∆x, (8.1.1)

the magnitude of ∆y can be found, once the ∆y/∆x and the variation ∆x
are known. If we denote the infinitesimal changes in x and y, respectively,

by dx and dy, the identity (8.1) becomes

dy ≡
[
dy

dx

]
dx. (8.1.2)

or

dy = f ′(x)dx. (8.1.3)

The symbols dy and dx are known as the differentials of y and x, re-

spectively.

Dividing the two identities in (8.1.2) throughout by dx, we have

(dy)
(dx)

≡
(
dy

dx

)
.

or
(dy)
(dx)

≡ f ′(x).

This result shows that the derivative dy/dx ≡ f ′(x) can be interpreted

as the quotient of two separate differentials dy and dx.

On the basis of (8.1.2), once we are given f ′(x), dy can immediately be

written as f ′(x)dx. The derivative f ′(x) may thus be viewed as a "convert-

er" that serves to convert an infinitesimal change dx into a corresponding
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change dy.

The following diagram shows the relationship between “∆y" and “dy".

Figure 8.1: Graphical illustration of the relationship between “∆y" and
“dy".

∆y ≡
[

∆y
∆x

]
∆x = CB

AC
AC = CB;

dy =
[
dy

dx

]
∆x = CD

AC
AC = CD,
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which differs from ∆y by an error of DB.

Example 8.1.1 Given y = 3x2 + 7x− 5, find dy.

Since f ′(x) = 6x+ 7, the desired differential is

dy = (6x+ 7)dx.

Remark 8.1.1 The purpose of finding the differential dy is called the dif-

ferentiation. Recall that we have also used this term as a synonym for

derivation. To avoid confusion, the word “differentiation" with the phrase

“with respect to x" when we take derivative dy/dx.

Differentials and Point Elasticity

As an illustration of the application of differentials in economics, let us

consider the elasticity of a function. For a demand function Q = f(P ), for

instance, the price elasticity of demand is defined as (∆Q/Q)/(∆P/P ), the

ratio of percentage change in quantity demanded and percentage change

in price. Now if ∆P → 0, the ∆P and ∆Q will reduce to the differential

dP and dQ, and the elasticity becomes

ϵd ≡ dQ/Q

dP/P
= dQ/dP

Q/P
= marginal demand function

average demand function
.

In general, given y = f(x), the point elasticity of y with respect to x as

ϵyx = dy/dx

y/x
= marginal function

average function
= dy

dx
× x

y
.

Example 8.1.2 Suppose the demand function is given by Q = 100 − 2P .

We want to find the price elasticity of demand, ϵd.

Since dQ/dP = −2 and Q/P = (100 − 2P )/P , so ϵd = (−P )/(50 − P ).
Thus the demand is inelastic (|ϵd| < 1) for 0 < P < 25, unit elastic (|ϵd| = 1)

for P = 25, and elastic for 25 < P < 50.
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8.2 Total Differentials

The concept of differentials can be extended to a function of two or more

independent variables. Let’s consider a savings function,

S = S(Y, i),

where S is savings, Y is national income, and i is the interest rate. If the

function is continuous and possesses continuous partial derivatives, we

can define the total differential as:

dS = ∂S

∂Y
dY + ∂S

∂i
di,

which means that the infinitesimal change in S is the sum of the infinites-

imal change in Y and the infinitesimal change in i.

Remark 8.2.1 If i remains constant, the total differential will reduce to the

partial differential:
∂S

∂Y
=
(
dS

dY

)
i constant

.

Furthermore, general case of a function of n variables y = f(x1, x2, · · · , xn),
the total differential of this function is given by

df = ∂f

∂x1
dx1 + ∂f

∂x2
dx2 + · · · + ∂f

∂xn
dxn =

n∑
i=1

fidxi,

in which each term on the right side indicates the amount of change in y

resulting from an infinitesimal change in one of n variables.

Similar to the case of one variable, the n partial elasticities can be writ-

ten as

ϵfxi
= ∂f

∂xi

xi
f

(i = 1, 2, · · · , n).
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8.3 Rule of Differentials

Let c be constant and u and v be two functions of the variables x1, x2, · · · , xn.

The the following rules are valid:

Rule I: dc = 0;

Rule II: d(cua) = caua−1du;

Rule III: d(u± v) = du± dv;

Rule IV: d(uv) = vdu+ udv;

Rule V: d(u/v) = 1/v2(vdu− udv).

Example 8.3.1 Find dy of the function y = 5x2
1+3x2. There are two ways to

find dy. One is the straightforward method by finding ∂f/∂x1 and ∂f/∂x2:

∂f/∂x1 = 10x1 and ∂f/∂x2 = 3, which will then enable us to write

dy = f1dx1 + f2dx2 = 10x1dx1 + 3dx2.

The other way is to use the differential rules given above by letting

u = 5x2
1 and v = 3x2;

dy = d(5x2
1) + d(3x2) (by rule III)

= 10x1dx1 + 3dx2 (by rule II).

Example 8.3.2 Find dy of the function y = 3x2
1 + x1x

2
2. Since f1 = 6x1 + x2

2

and f2 = 2x1x2, the desired differential is

dy = (6x1 + x2
2)dx1 + 2x1x2dx2.
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By applying the given rules, the same result can be arrived at

dy = d(3x2
1) + d(x1x

2
2)

= 6x1dx1 + x2
2dx1 + 2x1x2dx2

= (6x1 + x2
2)dx1 + 2x1x2dx2.

Example 8.3.3 For the function

y = x1 + x2

2x2
1

f1 = −(x1 + 2x2)
2x3

1
and f2 = 1

2x2
1
,

then

dy = −(x1 + 2x2)
2x3

1
dx1 + 1

2x2
1
dx2.

The same result can also be obtained by applying the given rules:

dy = 1
4x4

1
[2x2

1d(x1 + x2) − (x1 + x2)d(2x2
1)] [by rule V]

= 1
4x4

1
[2x2

1(dx1 + dx2) − (x1 + x2)4x1dx1]

= 1
4x4

1
[−2x1(x1 + 2x2)dx1 + 2x2

1dx2]

= −x1 + 2x2

2x3
1

dx1 + 1
2x2

1
dx2.

For the case of more than two functions, we have:

Rule VI: d(u± v ± w) = du± dv ± dw;

Rule VII: d(uvw) = vwdu+ uwdv + uvdw.
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8.4 Total Derivatives

Consider a function

y = f(x,w) with x = g(w).

Here, the variable w can affect y through two channels: (1) indirectly, via

the function g and then f , and (2) directly, via the function f . Unlike a

partial derivative, the total derivative takes into account both channels

and allows x to change with w. It expresses the overall effect of changing

w on y, taking into account both direct and indirect effects.

While the partial derivative fw can be used to express the direct effect

alone, it does not capture the indirect effect through x. In contrast, the

total derivative incorporates both channels of effect and provides a more

comprehensive understanding of the relationship between y and w.

To get the total derivative, we first get the total differential

dy = fxdx+ fwdw.

Dividing both sides of this equation by dw leads to the total derivative:

dy

dw
= fx

dx

dw
+ fw

dw

dw

= ∂y

∂x

dx

dw
+ ∂y

∂w
.

Example 8.4.1 Find the dy/dw, given the function

y = f(x,w) = 3x− w2 with x = g(w) = 2w2 + w + 4.

dy

dw
= fx

dx

dw
+ fw = 3(4w + 1) − 2w = 10w + 3.
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As a check, we may substitute the function g into f , to get

y = 3(2w2 + w + 4) − w2 = 5w2 + 3w + 12,

which is now a function of w alone. Then, we also have

dy

dw
= 10w + 3,

and thus we have the identical answer.

Example 8.4.2 Suppose that a utility function is given by

U = U(s, c),

where c is the amount of coffee consumed and s is the amount of sugar

consumed, and another function s = g(c) indicates the complementarity

between these two goods. Then we can find the marginal utility of coffee

given by

MUc = dU

dc
= ∂U

∂s
g′(c) + ∂U

∂c
.

Through the inverse function rule for c = g−1(s), we can also find the

marginal utility of sugar given by

MUs = dU

ds
= ∂U

∂c

dc

ds
+ ∂U

∂s

= ∂U

∂c

1
g′(c)

+ ∂U

∂s
.

The marginal rate of substitution of coffee for sugar MRScs is given by

MRScs = MUc
MUs

=
∂U
∂s
g′(c) + ∂U

∂c
∂U
∂c

1
g′(c) + ∂U

∂s

= g′(c)
[
∂U
∂s
g′(c) + ∂U

∂c
∂U
∂s
g′(c) + ∂U

∂c

]
= g′(c),

which is not strange since MRScs measures the rate of changes of c and s
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that is given by g′(c).

A Variation on the Theorem

For a function

y = f(x1, x2, w)

with x1 = g(w) and x2 = h(w), the total derivative of y is given by

dy

dw
= ∂f

∂x1

dx1

dw
+ ∂f

∂x2

dx2

dw
+ ∂f

∂w
.

Example 8.4.3 Let a production function be

Q = Q(K,L, t),

where K is the capital input, L is the labor input, and t is the time which

indicates that the production can shift over time in reflection of technolog-

ical change. Since capital and labor can also change over time, we may

write

K = K(t) and L = L(t).

Thus the rate of output with respect to time can be denote as

dQ

dt
= ∂Q

∂K

dK

dt
+ ∂Q

∂L

dL

dt
+ ∂Q

∂t
.

Another Variation on the Theme

Now if a function is given,

y = f(x1, x2, u, v)
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with x1 = g(u, v) and x2 = h(u, v), we can find the total derivative of y

with respect to u (while v is held constant). Since

dy = ∂f

∂x1
dx1 + ∂f

∂x2
dx2 + ∂f

∂u
du+ ∂f

∂v
dv,

dividing both sides of the above equation by du, we have

dy

du
= ∂y

∂x1

dx1

du
+ ∂y

∂x2

dx2

du
+ ∂y

∂u

du

du
+ ∂y

∂v

dv

du

= ∂y

∂x1

dx1

du
+ ∂y

∂x2

dx2

du
+ ∂y

∂u

[
dv

du
= 0 since v is constant

]
.

Since v is held constant, the above is the partial total derivative, de-

noted by the section symbol §, we redenote the above equation by the

following notation:

§y
§u

= ∂y

∂x1

∂x1

∂u
+ ∂y

∂x2

∂x2

∂u
+ ∂y

∂u
.

Example 8.4.4 Find the partial total derivatives §z
§u and §z

§v if

z = 3x2 − 2y4 + 5uv2,

where

x = u− v2 + 4.

and

y = 8u3v + v2 + 1.

By applying the above formula on the partial total derivative, we have

§z
§u

= ∂z

∂x

∂x

∂u
+ ∂z

∂y

∂y

∂u
+ ∂z

∂u

= 6x× 1 − 8y3 × 24u2v + 5v2

= 6x− 196y3u2v + 5v2.
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and

§z
§v

= ∂z

∂x

∂x

∂v
+ ∂z

∂y

∂y

∂v
+ ∂z

∂v

= 6x× −2v − 8y3 × (8u3 + 2v) + 10uv

= −12xv − 8y3(8u3 + 2v) + 10uv.

Remark 8.4.1 In the cases we have discussed, the formulas for the total

derivative can be viewed as applications of the chain rule, also known

as the composite function rule. Furthermore, the chain of derivatives is

not restricted to only two links. The concept of the total derivative can be

extended to situations where there are three or more links in the composite

function.

8.5 Implicit Function Theorem

The concept of total differentials can also enable us to find the deriva-

tives of so-called "implicit functions." As a result, we can still conduc-

t comparative-static analysis for general functions without obtaining an

explicit function.

Implicit Functions

A function given in the form of y = f(x1, x2, · · · , xn) is known as an ex-

plicit function because the variable y is explicitly expressed as a function

of x = (x1, x2, · · · , xn). However, in many cases, y is not an explicit func-

tion of x. Instead, the relationship between y and x is given in the form

of

F (y,x) = 0.

Such an equation may define an implicit function y = f(x). Note that
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an explicit function y = f(x1, x2, · · · , xn) can always be transformed into

an equation

F (y, x1, x2, · · · , xn) ≡ y − f(x1, x2, · · · , xn) = 0.

However, the reverse transformation is not always possible, which intro-

duces some uncertainty.

To address this uncertainty, we can impose certain conditions under

which we ensure that a given equation F (y,x) = 0 indeed defines an im-

plicit function y = f(x). The Implicit-Function Theorem provides such

conditions.

Theorem 8.5.1 (Implicit-Function Theorem) Suppose that F (y,x) : Rn+1 →
R is a continuously differentiable function, and F (y0,x0) = 0 for some point

(y0,x0) ∈ Rn+1. If Fy(y0,x0) ̸= 0, then there is a neighborhood N(x0) of (x0)
such that:

(1) A function y = f(x) can be defined implicitly on N(x0), satisfying:

F (y(x),x) = 0.

(2) The function y = f(x) is continuous on N(x0).

(3) The function y = f(x) has continuous partial derivatives on N(x0), which

are given by:
∂y

∂xi
= −Fxi

Fy
, i = 1, . . . , n.

The Implicit-Function Theorem provides an important tool for study-

ing implicit functions, which are essential in many areas of mathematics,

including calculus, differential equations, and geometry. It enables us to

convert an implicit equation into an explicitly defined function, which al-

lows us to analyze and solve problems more easily.
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Derivatives of Implicit Functions

Differentiating F , we have dF = 0, or

Fydy + F1dx1 + · · · + Fndxn = 0.

Suppose that only y and x1 are allowed to vary. Then the above equa-

tion reduce to Fydy + F1dx1 = 0. Thus

dy

dx1

∣∣∣∣∣other variable constant
≡ ∂y

∂x1
= −F1

Fy
.

In the simple case where the given equation is F (y, x) = 0, the rule

gives
dy

dx
= −Fx

Fy
.

Example 8.5.1 Suppose y − 3x4 = 0. Then dy
dx

= −Fx

Fy
= −−12x3

1 = 12x3.

In this particular case, we can easily solve the given equation for y, to

get y = 3x4 so that dy/dx = 12x3.

Example 8.5.2 F (x, y) = x2+y2−9 = 0, which gives us a circle with radius

3. Thus,
dy

dx
= −Fx

Fy
= −2x

2y
= −x

y
, (y ̸= 0).

Example 8.5.3 F (y, x, w) = y3x2 + w3 + yxw − 3 = 0, we have

∂y

∂x
= −Fx

Fy
= − 2y3x+ yw

3y2x2 + xw
.

In particular, at point (1, 1, 1), ∂y
∂x

= −3/4.

Example 8.5.4 Suppose that the transformation frontier F (Q,K,L) = 0
of a production technology implicitly defines a production function Q =
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f(K,L). Then we can find MPL (marginal product of labor) and MPK

(marginal product of capital) as follows:

MPK ≡ ∂Q

∂K
= −FK

FQ
;

MPL ≡ ∂Q

∂L
= −FL

FQ
.

In particular, we can also find theMRTSLK (marginal rate of technical

substitution) which is given by

MRTSLK ≡ |∂K
∂L

| = FL
FK

.

Extension to the Simultaneous-Equation Case

The Implicit-Function Theorem can be extended to the case with any num-

ber of dependent variables (y1, y2, · · · , yn).

Consider a set of simultaneous equations.

F 1(y1, y2, · · · , yn; x1, x2, · · · , xm) = 0;

F 2(y1, y2, · · · , yn; x1, x2, · · · , xm) = 0;

· · ·

F n(y1, y2, · · · , yn;x1, x2, · · · , xm) = 0.

Suppose that F 1, F 2, · · · , F n are continuously differentiable. Taking d-

ifferentials on both side of the equation system, we then have

∂F 1

∂y1
dy1+∂F 1

∂y2
dy2+· · ·+∂F 1

∂yn
dyn = −

[
∂F 1

∂x1
dx1 + ∂F 1

∂x2
dx2 + · · · + ∂F 1

∂xm
dxm

]
;

∂F 2

∂y1
dy1+∂F 2

∂y2
dy2+· · ·+∂F 2

∂yn
dyn = −

[
∂F 2

∂x1
dx1 + ∂F 2

∂x2
dx2 + · · · + ∂F 2

∂xm
dxm

]
;
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· · ·

∂F n

∂y1
dy1+

∂F n

∂y2
dy2+· · ·+∂F

1

∂yn
dyn = −

[
∂F n

∂x1
dx1 + ∂F n

∂x2
dx2 + · · · + ∂F n

∂xm
dxm

]
.

Or in matrix form,



∂F 1

∂y1
∂F 1

∂y2
· · · ∂F 1

∂yn

∂F 2

∂y1
∂F 2

∂y2
· · · ∂F 2

∂yn

· · · · · · · · · · · ·
∂Fn

∂y1
∂Fn

∂y2
· · · ∂Fn

∂yn





dy1

dy2

· · ·
dyn

 = −



∂F 1

∂x1
∂F 1

∂x2
· · · ∂F 1

∂xm

∂F 2

∂x1
∂F 2

∂x2
· · · ∂F 2

∂xm

· · · · · · · · · · · ·
∂Fn

∂x1
∂Fn

∂x2
· · · ∂Fn

∂xm





dx1

dx2

· · ·
dxm

 . (8.5.4)

Now suppose that the following Jacobian determinant is nonzero:

|J | =
∣∣∣∣∣∂(F 1, F 2, · · · , F n)
∂(y1, y2, · · · , yn)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F 1

∂y1
∂F 1

∂y2
· · · ∂F 1

∂yn

∂F 2

∂y1
∂F 2

∂y2
· · · ∂F 2

∂yn

· · · · · · · · · · · ·
∂Fn

∂y1
∂Fn

∂y2
· · · ∂Fn

∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0.

Then, we can obtain total differentials dy = (dy1, dy2, . . . , dyn)′ by in-

verting J .

dy = J−1Fxdx,

where

Fx =



∂F 1

∂x1
∂F 1

∂x2
· · · ∂F 1

∂xm

∂F 2

∂x1
∂F 2

∂x2
· · · ∂F 2

∂xm

· · · · · · · · · · · ·
∂Fn

∂x1
∂Fn

∂x2
· · · ∂Fn

∂xm

 .

If we want to obtain partial derivatives with respect to xi (i = 1, 2, . . . ,m),

we can do so by letting dxk = 0 for k ̸= i and dividing both sides of (8.5.4)
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by dxi. Then, we have the following equation:



∂F 1

∂y1
∂F 1

∂y2
· · · ∂F 1

∂yn

∂F 2

∂y1
∂F 2

∂y2
· · · ∂F 2

∂yn

· · · · · · · · · · · ·
∂Fn

∂y1
∂Fn

∂y2
· · · ∂Fn

∂yn





∂y1
∂xi

∂y2
∂xi

· · ·
∂yn

∂xi

 = −



∂F 1

∂xi

∂F 2

∂xi

· · ·
∂Fn

∂xi

 .

Then, by Cramer’s rule, we have

∂yj
∂xi

=
|J i
j |

|J |
(j = 1, 2, · · · , n; i = 1, 2, · · · ,m),

where |J i
j | is obtained by replacing the jth column of |J | with

Fxi
=
[
∂F 1

∂xi
,
∂F 2

∂xi
, · · · , ∂F

n

∂xi

]′

.

Of course, we can find these derivatives by inversing the Jacobian ma-

trix J : 

∂y1
∂xi

∂y2
∂xi

· · ·
∂yn

∂xi

 = −



∂F 1

∂y1
∂F 1

∂y2
· · · ∂F 1

∂yn

∂F 2

∂y1
∂F 2

∂y2
· · · ∂F 2

∂yn

· · · · · · · · · · · ·
∂Fn

∂y1
∂Fn

∂y2
· · · ∂Fn

∂yn



−1 

∂F 1

∂xi

∂F 2

∂xi

· · ·
∂Fn

∂xi

 .

In the compact notation,

∂y

∂xi
= −J−1Fxi

.

Example 8.5.5 Let the national-income model be rewritten in the form:

Y − C − I0 −G0 = 0;

C − α− β(Y − T ) = 0;
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T − γ − δY = 0.

Then

|J | =

∣∣∣∣∣∣∣∣∣∣
∂F 1

∂Y
∂F 1

∂C
∂F 1

∂T

∂F 2

∂Y
∂F 2

∂C
∂F 2

∂T

∂F 3

∂Y
∂F 3

∂C
∂F 3

∂T

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 −1 0

−β 1 β

−δ 0 1

∣∣∣∣∣∣∣∣∣∣
= 1 − β + βδ.

Suppose that all exogenous variables and parameters are fixed except

G0. Then we have 
1 −1 0

−β 1 β

−δ 0 1



∂Ȳ
∂G0

∂C̄
∂G0

∂T̄
∂G0

 =


1
0
0

 .

We can solve the above equation for, say, ∂Ȳ /∂G0 which comes out to be

∂Ȳ

∂G0
=

∣∣∣∣∣∣∣∣∣∣
1 −1 0
0 1 β

0 0 1

∣∣∣∣∣∣∣∣∣∣
|J |

= 1
1 − β + βδ

.

8.6 Comparative Statics of General-Function Mod-

els

Consider a single-commodity market model:

Qd = Qs, [equilibrium condition];

Qd = D(P, Y0), [∂D/∂P < 0; ∂D/∂Y0 > 0];

Qs = S(P ), [dS/dP > 0],
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where Y0 is an exogenously determined income. From this model, we can

obtain a single equation, namely, excess demand:

F (P, Y0) = D(P, Y0) − S(P ) = 0.

Although this equation cannot be solved explicitly for the equilibrium

price P̄ , by the implicit-function theorem, we know that there exists the

equilibrium price P̄ that is the function of Y0:

P̄ = P̄ (Y0),

such that

F (P̄ , Y0) = D(P̄ , Y0) − S(P̄ ) = 0.

It then requires only a straight application of the implicit-function rule

to produce the comparative-static derivative, dP̄/dY0:

dP̄

dY0
= −∂F/∂Y0

∂F/∂P
= − ∂D/∂Y0

∂D/∂P − dS/dP
> 0.

Since Q̄ = S(P̄ ), we have

dQ̄

dY0
= dS

dP

dP̄

dY0
> 0.

8.7 Matrix Derivatives

Matrix derivatives play an important role in economic analysis, especially

in econometrics. If A is a n × n non-singular matrix, the derivative of its

determinant with respect to A is given by

∂

∂A
|A| = [Cij]
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where [Cij] is the matrix of cofactors of A.

Some Useful Formulas

Let a, b be k × 1 vectors and M be a k × k matrix. Then we have:

da′b

db
= a;

db′a

db
= a;

dMb

db
= M ′;

db′Mb

db
= (M + M ′)b.
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Chapter 9

Optimization: Maxima and

Minima of a Function of One

Variable

The optimization problem lies at the core of economics. The assumption

that individuals act rationally by maximizing their personal interests is

fundamental to economic analysis and practice. This assumption leads to

the study of goal equilibrium, in which the equilibrium state is defined

as the optimal position for a given economic unit, and the said unit will

deliberately strive for attainment of that equilibrium. Classical techniques

for locating optimal positions, those using differential calculus, are the pri-

mary focus of our attention.

9.1 Optimal and Extreme Values

Economics is a science of choice. When an economic project is to be carried

out, there are normally a number of alternative ways of accomplishing it.

One (or more) of these alternatives will be more desirable than others from

149
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the standpoint of some criterion. The essence of the optimization problem

is to choose the most desirable alternative.

The most common criterion for choice among alternatives in economics

is the goal of maximizing something (e.g., utility, profit) or minimizing

something (e.g., cost). Such maximization and minimization problems fall

under the general heading of optimization. From a purely mathematical

point of view, the collective term for maximum and minimum is the more

matter-of-fact designation extremum, meaning an extreme value.

In formulating an optimization problem, the first order of business is

to delineate an objective function, in which the dependent variable repre-

sents the objects whose magnitudes the economic unit in question can pick

and choose. The independent variables are referred to as choice variables.

Consider a general-form objective function

y = f(x).

Figure 9.1: The extremum for various functions: (a) constant function; (b)
monotonic function, (3) non-monotonic function.

Figure 9.1 depicts three specific cases of functions. Points E and F in
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(c) are referred to as relative (or local) extremum, as they represent an

extremum in some neighborhood of the point only. Our discussion will

mainly focus on the search for relative extrema. An absolute (or global)

maximum must be either a relative maximum or one of the ends of the

function. Thus, if we know all the relative maxima, it is necessary only to

select the largest of these and compare it with the end points in order to

determine the absolute maximum. Hereafter, the extreme values consid-

ered will be relative or local ones, unless indicated otherwise.

9.2 Existence of Extremum for Continuous Func-

tions

Let X be the domain of a function f . We give the following concepts:

Definition 9.2.1 (Local Optimum) Let f(x) be a continuous function de-

fined on X ⊆ R (or, in the general case, of Rn). It is said to have a local

or relative maximum (resp. minimum) at x0 ∈ X if there is in a neighbor-

hood U of x0 such that f(x) ≤ f(x0) (resp. f(x) ≥ f(x0)) for all x ∈ U .

Definition 9.2.2 (Global Optimum) If f(x∗) = f(x) (resp. f(x∗) > f(x))
for all x ∈ X , then the function is said to have global (unique) maximum

at x∗; if f(x∗) 5 f(x) (resp. f(x∗) < f(x)) for all x ∈ X , then the function is

said to have global (unique) minimum at x∗.

A classical conclusion about global optimization is the so-called Weier-

strass theorem.

Proposition 9.2.1 (Weierstrass’s Theorem) Suppose that f is continuous on

a closed and bounded subset X of R1 (or, in the general case, of Rn). Then, f

reaches its maximum and minimum in X , i.e. there exist points m,M ∈ X such
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that f(m) ≤ f(x) ≤ f(M) for all x ∈ X . Moreover, the set of maximal (resp.

minimal) points is compact.

In order to determine whether a function has an extreme point, we can

use the method of finding extreme values by the differential method. Gen-

erally, there are two types of necessary conditions for the interior extreme

point, i.e., the first and second-order necessary conditions.

9.3 First-Derivative Test for Relative Maximum

and Minimum

Given a function y = f(x), the first derivative f ′(x) plays a key role in

determining its extreme values. For smooth functions, an interior rela-

tive extreme value can only occur where x is known as a stationary point,

i.e., where f ′(x) = 0. Such points are called "stationary" because at these

points, the function may "stop" increasing or decreasing. A stationary

point is also known as a critical point.

A turning point is a point at which the derivative changes sign. A

turning point may be either a relative maximum or a relative minimum.

If the function is differentiable, then a turning point is a stationary point;

however, not all stationary points are turning points, such as inflection

points (e.g., y = x3).

Thus, f ′(x) = 0 is a necessary (but not sufficient) condition for a rela-

tive extremum (either maximum or minimum). We summarize this neces-

sary condition for extremum in the following proposition.

Proposition 9.3.1 (Fermat’s Theorem: Necessary Condition for Extremum)

Suppose that f(x) is differentiable on X and has a local extremum (minimum or

maximum) at an interior point x0 ∈ X . Then f ′(x0) = 0.
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Figure 9.2: The first derivative test: (a) f ′(x0) does not exist; and (b)
f ′(x0) = 0.

Note that if the first derivative vanishes at some point, it does not imply

that f possesses an extremum at that point. For example, f = x3 has a

stationary point at x = 0 but does not have an extremum at that point.

We have some useful results about stationary points.

Proposition 9.3.2 (Rolle’s Theorem) Suppose that f is continuous in [a, b],
differentiable on (a, b), and f(a) = f(b). Then there exists a point c ∈ (a, b) such

that f ′(c) = 0.

From Rolle’s Theorem, we can prove the well-known Mean-Value The-

orem, also called Lagrange’s Theorem.

Proposition 9.3.3 (Mean Value Theorem or Lagrange’s Theorem) Suppose

that f is continuous on [a, b] and differentiable on (a, b). Then there exists a point

c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

PROOF. Let g(x) = f(x) − f(b)−f(a)
b−a x. Then, g is continuous in [a, b],

differentiable on (a, b) and g(a) = g(b). Thus, by Rolle’s Theorem, there

exists one point c ∈ (a, b) such that g′(c) = 0, and therefore f ′(c) = f(b)−f(a)
b−a .

� 2
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Figure 9.3: The Mean Value Theorem implies that there exists some c in
the interval (a, b) such that the secant joining the endpoints of the interval
[a, b] is parallel to the tangent at c.

The above Mean Value Theorem is also true for multivariate x. If func-

tion f : Rn → R is differentiable, then there is z = tx + (1 − t)y with

0 ≤ t ≤ 1, such that

f(y) = f(x) +Df(z)(y − x),

where

Df(x) =
[
∂f(x)
∂x1

,
∂f(x)
∂x2

, · · · , ∂f(x)
∂xn

]
.

A variation of the above Mean Value Theorem is in the form of integral

calculus:

Theorem 9.3.1 (Mean Value Theorem of Integral Calculus) Suppose that f :
[a, b] → R is continuous on [a, b]. Then there exists a number c ∈ (a, b) such that

∫ b

a
f(x)dx = f(c)(b− a).

PROOF. Let F (x) =
∫ x
a f(t)dt. Since f : [a, b] → R is continuous on [a, b],

F (x) is continuous and differentiable on (a, b). Then, by the Mean Value
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Theorem, there is c ∈ (a, b) such that

F (b) − F (a)
b− a

= F ′(c) = f(c).

Therefore, we have ∫ b

a
f(x)dx = f(c)(b− a).

� 2

The second variation of the mean-value theorem is the generalized

mean-value theorem:

Proposition 9.3.4 (Cauchy’s Theorem or the Generalized Mean Value Theorem)

Suppose that f and g are continuous in [a, b] and differentiable in (a, b). Then

there exists a point c ∈ (a, b) such that

(f(b) − f(a))g′(c) = (g(b) − g(a))f ′(c).

Proof. The case where g(a) = g(b) is easy. So, assume that g(a) ̸= g(b).
Define

h(x) = f(x) − f(b) − f(a)
g(b) − g(a)

g(x).

Then, applying the Mean-Value Theorem to h(x) on [a, b] gives

h(b) − h(a) = h′(c)(b− a) = 0,

where c is a point in (a, b). Therefore,

f(b) − f(a) − f(b) − f(a)
g(b) − g(a)

(g(b) − g(a)) = 0,

which implies

(f(b) − f(a))g′(c) = (g(b) − g(a))f ′(c).
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This completes the proof. �
To determine whether a function has a local maximum or minimum,

we can use the following proposition on the first-derivative test relative

extremum.

Proposition 9.3.5 (First-Derivative Test Relative Extremum) Suppose that

f ′(x0) = 0. Then the value of the function at x0, f(x0), is

(a) a relative maximum if f ′(x) changes its sign from positive to negative from

the immediate left of the point x0 to its immediate right;

(b) a relative minimum if f ′(x) changes its sign from negative to positive from

the immediate left of the point x0 to its immediate right;

(c) an inflection (not extreme) point if f ′(x) has the same sign on some neigh-

borhood.

Thus, a relative maximum or minimum must be a turning point.

Example 9.3.1 Consider the function y = (x− 1)3.

We have f ′(x) = 3(x − 1)2, which gives f ′(1) = 0. However, x = 1 is

not an extreme point because f ′(x) does not change sign around x = 1.

Example 9.3.2 Consider the function y = f(x) = x3 − 12x2 + 36x+ 8.

We have f ′(x) = 3x2 − 24x + 36 = 3(x − 2)(x − 6), which leads to

f ′(x) = 0 when x = 2 or x = 6. We also have f ′(x) > 0 for x < 2 and

f ′(x) < 0 for x > 2 when x is sufficiently close to 2. Therefore, x = 2
is a local maximal point and the corresponding maximum value of the

function is f(2) = 40. Similarly, we can verify that x = 6 is a local minimal

point and the corresponding minimum value is f(6) = 8 as the minimum.

Example 9.3.3 Find the relative extremum of the average-cost function

AC = f(Q) = Q2 − 5Q+ 8.
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Since f ′(2.5) = 0, f ′(Q) < 0 for Q < 2.5, and f ′(Q) > 0 for Q > 2.5, the

average cost reaches its minimum at Q̄ = 2.5.

9.4 Second and Higher Derivatives

Since the first derivative f ′(x) of a function y = f(x) is also a function of x,

we can consider the derivative of f ′(x), which is called the second deriva-

tive. Similarly, we can find derivatives of even higher orders. These will

enable us to develop alternative criteria for locating the relative extrema

of a function.

The second derivative of the function f is denoted by f ′′(x) or d2y/dx2.

If the second derivative f ′′(x) exists for all x values, f(x) is said to be twice

differentiable. If, in addition, f ′′(x) is continuous, f(x) is said to be twice

continuously differentiable.

The higher-order derivatives of f(x) can be obtained and symbolized

similarly to the second derivative

f ′′′(x), f (4)(x), · · · , f (n)(x),

or
d3y

dx3 ,
d4y

dx4 , · · · , d
ny

dxn
.

Remark 9.4.1 dny/dxn can be also written as (dn/dxn)y, where the dn/dxn

part serves as an operator symbol instructing us to take the n-th derivative

with respect to x.

Example 9.4.1 y = f(x) = 4x4 − x3 + 17x2 + 3x− 1.
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Then

f ′(x) = 16x3 − 3x2 + 34x+ 3;

f ′′(x) = 48x2 − 6x+ 34;

f ′′′(x) = 96x− 6;

f (4)(x) = 96;

f (5)(x) = 0.

Example 9.4.2 Find the first four derivatives of the function

y = g(x) = x

1 + x
(x ̸= −1).

g′(x) = (1 + x)−2;

g′′(x) = −2(1 + x)−3;

g′′′(x) = 6(1 + x)−4;

g(4)(x) = −24(1 + x)−5.

Remark 9.4.2 A negative second derivative is consistently reflected in an

inverse U-shaped curve; a positive second derivative is reflected in an U-

shaped curve.

9.5 Second-Derivative Test

Recall the meaning of the first and second derivatives of a function f . The

sign of the first derivative tells us whether the function is increasing (f ′ >

0) or decreasing (f ′ < 0), while the sign of the second derivative tells us

whether the slope of the function is increasing (f ′′ > 0) or decreasing (f ′′ <

0). This gives us insight into how to verify the existence of a maximum
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or minimum at a stationary point. We have the following result on the

second-derivative test for relative extremum.

Proposition 9.5.1 (Second-Derivative Test for Relative Extremum) Suppose

that f ′(x0) = 0. Then, the value of the function at x0, f(x0), will be

(a) a relative maximum if f ′′(x0) < 0;

(b) a relative minimum if f ′′(x0) > 0.

This test is generally more convenient to use than the first-derivative

test, as it does not require us to check the derivative sign to both the left

and right of x.

Example 9.5.1 Consider y = f(x) = 4x2 − x.

Since f ′(x) = 8x− 1 and f ′′(x) = 8, we know f(x) reaches its minimum

at x̄ = 1/8. Indeed, since the function plots as a U-shaped curve, the

relative minimum is also the absolute minimum.

Example 9.5.2 Consider y = g(x) = x3 − 3x2 + 2.

y′ = g′(x) = 3x2 − 6x and y′′ = 6x− 6. Setting g′(x) = 0, we obtain two

stationary points x̄1 = 0 and x̄2 = 2, which in turn yield the two extreme

values g(0) = 2 (a maximum because g′′(0) = −6 < 0) and g(2) = −2 (a

minimum because g′′(2) = 6 > 0).

Remark 9.5.1 Note that when f ′(x0) = 0, f ′′(x0) < 0 (resp. f ′′(x0) > 0)

is a sufficient condition for a relative maximum (resp. minimum), but not

a necessary condition. However, the condition f ′′(x0) ≤ 0 (f ′′(x0) ≥ 0)

is necessary (although not sufficient) for a relative maximum (resp. mini-

mum).
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Condition for Profit Maximization

Let R = R(Q) be the total-revenue function and let C = C(Q) be the

total-cost function, where Q is the level of output. The profit function is

then given by

π = π(Q) = R(Q) − C(Q).

To find the profit-maximizing output level, we need to find Q̄ such that

π′(Q̄) = R′(Q̄) − C ′(Q̄),

or

R′(Q̄) = C ′(Q̄), or MR(Q̄) = MC(Q̄).

To ensure the first-order condition leads to a maximum, we require

d2π

dQ
≡ π′′(Q̄) − C ′′(Q̄) < 0.

Economically, this means that at the output level Q̄, the marginal rev-

enue MR is equal to the marginal cost MC. If the rate of change of MR

is less than the rate of change of MC at Q̄, then increasing output would

decrease profit, and therefore Q̄ would maximize profit.

Example 9.5.3 Let R(Q) = 1200Q − 2Q2 and C(Q) = Q3 − 61.25Q2 +
1528.5Q+ 2000. Then the profit function is

π(Q) = −Q3 + 59.2Q2 − 328.5Q− 2000.

Setting π′(Q) = −3Q2 + 118.5Q − 328.5 = 0, we have Q̄1 = 3 and

Q̄2 = 36.5. Since π′′(3) = −18 + 118.5 = 100.5 > 0 and π′′(36.5) = −219 +
118.5 = −100.5 < 0, so the profit-maximizing output is Q̄ = 36.5. At this

output level, the marginal revenue and marginal cost are both 56.5, and
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increasing or decreasing output would result in a lower profit.

9.6 Taylor Series

This section discusses the expansion of a function y = f(x) into the Taylor

series around any point x = x0. Expanding a function y = f(x) around

a point x0 involves transforming the function into a polynomial form,

where the coefficients of the different terms are expressed in terms of the

derivative values f ′(x0), f ′′(x0), etc., all evaluated at the point of expansion

x0.

Proposition 9.6.1 (Taylor’s Theorem) Given an arbitrary function ϕ(x), if we

know the values of ϕ(x0), ϕ′(x0), ϕ′′(x0), etc., then this function can be expanded

around the point x0 as follows:

ϕ(x) = ϕ(x0) + ϕ′(x0)(x− x0) + 1
2!
ϕ′′(x0)(x− x0)2 + · · · + 1

n!
ϕ(n)(x0)(x− x0)n +Rn

≡ Pn +Rn,

where Pn represents the nth-degree polynomial andRn denotes a remainder which

can be expressed in the so-called Lagrange form of the remainder:

Rn = 1
(n+ 1)!

ϕ(n+1)(xλ)(x− x0)n+1,

where ξ is some value between x0 and x.

In other words, the Taylor series of a function ϕ(x) around x0 is a rep-

resentation of the function as an infinite sum of terms, each of which is a

power of x−x0 multiplied by a coefficient involving the derivatives of ϕ(x)
evaluated at x0. The Lagrange form of the remainder gives an estimate of

the error in the approximation, with the size of the error decreasing as n in-
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creases. Taylor series expansions are useful in many areas of mathematics

and science, including calculus, physics, and engineering.

Figure 9.4: The graphic representation of the Taylor’s Theorem reduces to
the mean-value theorem when n = 0.

Remark 9.6.1 When n = 0, the Taylor’s Theorem reduces to the mean-

value theorem that we discussed in Section 9.3:

ϕ(x) = P0 +R0 = ϕ(x0) + ϕ′(xλ)(x− x0),

or

ϕ(x) − ϕ(x0) = ϕ′(xλ)(x− x0),

which states that the difference between the value of the function ϕ at x0

and at any other x value can be expressed as the product of the difference

(x− x0) and ϕ′(xλ) with xλ being some point between x and x0.

Remark 9.6.2 If x0 = 0, then Taylor series reduce to the so-called Maclau-
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rin series:

ϕ(x) = ϕ(0)+ϕ′(0)x+ 1
2!
ϕ′′(0)x2 +· · ·+ 1

n!
ϕ(n)(0)xn+ 1

(n+ 1)!
ϕ(n+1)(xλ)xn+1,

where xλ is a point between 0 and x.

Example 9.6.1 Expand the function

ϕ(x) = 1
1 + x

around the point x0 = 1, with n = 4. Since ϕ(1) = 1
2 and

ϕ′(x) = −(1 + x)−2, ϕ′(1) = −1/4;

ϕ′′(x) = 2(1 + x)−3, ϕ′′(1) = 1/4;

ϕ(3)(x) = −6(1 + x)−4, ϕ(3)(1) = −3/8;

ϕ(4)(x) = 24(1 + x)−5, ϕ(4)(1) = 3/4,

we obtain the following Taylor series:

ϕ(x) = ϕ(1) + ϕ′(1)(x− 1) + 1
2!
ϕ′′(1)(x− 1)2 + 1

3!
ϕ′′′(1)(x− 1)3

+ 1
n!
ϕ(4)(1)(x− 1)4 +R4

= 1/2 − 1/4(x− 1) + 1/8(x− 1)2 − 1/16(x− 1)3

+1/32(x− 1)4 + ϕ(n+1)(xλ)
5!

(x− 1)5.

9.7 Nth-Derivative Test

A relative extremum of the function f can be defined as follows:

A function f(x) attains a relative maximum (resp. minimum) value at

x0 if f(x)−f(x0) is nonpositive (resp. nonnegative) for values of x in some

neighborhood of x0.
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Assume that f(x) has finite, continuous derivatives up to the N -th or-

der at x = x0. Then the function can be expanded around x = x0 as a

Taylor series:

f(x) − f(x0) =f ′(x0)(x− x0) + 1
2!
f ′′(x0)(x− x0)2 + · · ·

+ 1
(N − 1)!

f (N−1)(x0)(x− x0)N−1 + 1
N !
f (N)(xλ)(x− x0)N .

Now if

f ′(x0) = f ′′(x0) = . . . = f (N−1)(x0) = 0

and

f (N)(xλ)(x− x0)N ̸= 0,

the above equation reduces to

f(x) − f(x0) = 1
N !
f (N)(xλ)(x− x0)N ̸= 0. (9.7.1)

Then, we have the following proposition.

Proposition 9.7.1 (Nth-Derivative Test) Suppose that f ′(x0) = 0, and the

first nonzero derivative value at x0 encountered in successive derivation is that of

the Nth derivative, f (N)(x0) ̸= 0. Then the stationary value f(x0) will be

(a) a relative maximum if N is an even number and f (N)(x0) < 0;

(b) a relative minimum if N is an even number and f (N)(x0) > 0;

(c) an inflection point if N is odd.

Example 9.7.1 Consider the function y = (7 − x)4.

Since f ′(7) = 4(7−7)3 = 0, f ′′(7) = 12(7−7)2 = 0, f ′′′(7) = 24(7−7) = 0,

f (n)(7) = 24 > 0, so x = 7 is a relative minimum with f(7) = 0.



Chapter 10

Exponential and Logarithmic

Functions

Exponential functions and logarithmic functions are important mathemat-

ical tools with diverse applications in economics, finance, science, and en-

gineering. In this chapter, we will discuss some fundamental properties of

these functions and their derivatives.

10.1 Exponential Functions

An exponential function is a function of the form:

y = f(t) = bt, (b > 0, b ̸= 1),

where b is a fixed base of the exponent t. The base b determines the rate

at which the function grows or decays. When b > 1, the function grows

exponentially, and when 0 < b < 1, the function decays exponentially. Its

generalized version has the form:

y = abct.
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Exponential functions have several important properties:

1. The domain of an exponential function is all real numbers.

2. The range of an exponential function is (0,∞).

3. Exponential functions are one-to-one and onto on their respective

domains and ranges.

Remark 10.1.1 y = abct = a(bc)t. Thus we can consider bc as a base of

exponent t. It changes exponent from ct to t and changes base b to bc.

The exponential function y = et, where e ≈ 2.71828 is the mathemati-

cal constant known as Euler’s number, is a special case of the exponential

function, known as the natural exponential function, which can be alter-

natively denoted as

y = a exp(rt).

Remark 10.1.2 It can be proved that e may be defined as the limit:

e ≡ lim
n→∞

f(n) = lim
n→∞

(
1 + 1

n

)n
.

10.2 Logarithmic Functions

For the exponential function y = bt and the natural exponential function

y = et, taking the log of y to the base b (denote by logb y) and the base e

(denoted by loge y) respectively, we obtain the logarithmic function.

t = logb y,

and

t = loge y ≡ ln y.

For example, we know that 42 = 16. So we can write log4 16 = 2.
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Since y = bt ⇐⇒ t = logb y, we can write

blogb y = bt = y.

The following rules are familiar to us:

Rules:

(a) ln(uv) = ln u+ ln v (log of product);

(b) ln(u/v) = ln u− ln v (log of quotient);

(c) ln ua = a ln u (log of power);

(d) logb u = (logb e)(loge u) = (logb e)(ln u) (conversion of log

base);

(e) logb e = 1/(loge b) = 1/ ln b (inversion of log base).

Properties of Log:

(a) log y1 = log y2 iff y1 = y2;

(b) log y1 > log y2 iff y1 > y2;

(c) 0 < y < 1 iff log y < 0;

(d) y = 1 iff log y = 0;

(e) log y → ∞ as y → ∞;

(f) log y → −∞ as y → 0.

Remark 10.2.1 t = logb y and t = ln y are the respective inverse functions

of the exponential functions y = bt and y = et.
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10.3 Derivatives of Exponential and Logarithmic

Functions

The Basic Rule:

(a) d ln t
dt

= 1
t
;

(b) det

dt
= et;

(c) def(t)

dt
= f ′(t)ef(t);

(d) d
dt

ln f(t) = f ′(t)
f(t) .

Example 10.3.1 The following are examples to find derivatives:

(a) Let y = ert. Then dy/dt = rert;

(b) Let y = e−t. Then dy/dt = −e−t;

(c) Let y = ln at. Then dy/dt = a/at = 1/t;

(d) Let y = ln tc. Since y = ln tc = c ln t, so dy/dt = c(1/t);

(e) Let y = t3 ln t2. Then dy/dt = 3t2 ln t2 + 2t3/t = 2t2(1 + 3 ln t).

The Case of Base b

(a) dbt

dt
= bt ln b;

(b) d
dt

logb t = 1
t ln b ;

(c) d
dt
bf(t) = f ′(t)bf(t) ln b;

(d) d
dt

logb f(t) = f ′(t)
f(t)

1
ln b .

Proof of (a). Since bt = eln bt = et ln b, then (d/dt)bt = (d/dt)et ln b =
(ln b)(et ln b) = bt ln b.
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Proof of (b). Since

logb t = (logb e)(loge t) = (1/ ln b) ln t,

(d/dt)(logb t) = (d/dt)[(1/ ln b) ln t] = (1/ ln b)(1/t)

Example 10.3.2 (a) Let y = 121−t. Then dy
dt

= d(1−t)
dt

121−t ln 12 = −121−t ln 12

An Application

Example 10.3.3 To find dy/dx from y = xaekx−c, we take the natural log of

both sides:

ln y = a ln x+ kx− c.

Differentiating both sides with respect to x, we get

1
y

dy

dx
= a

x
+ k.

Multiplying both sides by y, we get

dy

dx
= (a/x+ k)y = (a/x+ k)xaekx−c.

Example 10.3.4 Use the above technical method, we can similarly find the

derivative of y = ϕ(x)ψ(x), which cannot be fund out by any other rule.

Taking the natural log of both sides, we have

ln y = ψ(x) lnϕ(x).

Differentiating both sides with respect to x leads to

1
y

dy

dx
= ψ′(x) lnϕ(x) + ψ(x)ϕ′(x)

ϕ(x)
.
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Multiplying both sides by y, we get

dy

dx
= ϕ(x)ψ(x)

[
ψ′(x) lnϕ(x) + ψ(x)ϕ′(x)

ϕ(x)

]
.



Chapter 11

Optimization for a Function of

Two or More Variables

This chapter discusses finding the extreme values of an objective function

that involves two or more choice variables. Our focus will be heavily on

relative extrema, and unless otherwise specified, the extrema referred to

are relative.

11.1 The Differential Version of Optimization Con-

ditions

In this section, we demonstrate the equivalence between the derivative

version of first and second-order conditions and their differential counter-

parts.

We first consider the function z = f(x) with only one variable. Recall

that the differential of z = f(x) is

dz = f ′(x)dx.
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Since f ′(x) = 0 is the necessary condition for extreme values, it implies

that dz = 0 is also necessary. This first-order condition requires that dz = 0
as x is varied. In such a context, with dx ̸= 0, dz = 0 if and only if f ′(x) = 0.

What about the sufficient conditions in terms of second-order differ-

entials?

Differentiating dz = f ′(x)dx, we get

d2z ≡ d(dz) = d[f ′(x)dx]

= d[f ′(x)]dx

= f ′′(x)dx2.

Note that the symbols d2z and dx2 are fundamentally different. d2z

means the second-order differential of z; whereas dx2 means the squaring

of the first-order differential dx.

Thus, from the above equation, we have d2z < 0 (resp. d2z > 0) if and

only if f ′′(x) < 0 (resp. f ′′(x) > 0). Therefore, the second-order sufficient

condition for maximum (resp. minimum) of z = f(x) is d2z < 0 (resp.

d2z > 0).

11.2 Extreme Values of a Function of Two Vari-

ables

For a function of one variable, an extreme value is represented graphically

by the peak of a hill or the bottom of a valley in a two-dimensional graph.

With two choice variables, the graph of the function z = f(x, y) becomes a

surface in three-dimensional space, and while the extreme values are still

associated with peaks and valleys, they are now identified by looking at

the critical points of the function.
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Figure 11.1: Graphical illustrations of extrema of a function with two
choice variables: (a) A is a maximum; and (b) B is a minimum.

11.2.1 First-Order Condition

For a function z = f(x, y), the first-order necessary condition for an ex-

tremum involves setting the total differential dz to zero for arbitrary values

of dx and dy: an extremum must be reached at a stationary point where z

is constant for arbitrary infinitesimal changes in x and y.

In the present two-variable case, the total differential is given by

dz = fxdx+ fydy.

Thus, the equivalent derivative version of the first-order condition dz = 0
is

fx = fy = 0

or equivalently,

∂f/∂x = ∂f/∂y = 0.

As in the earlier discussion, the first-order condition is necessary, but

not sufficient to identify an extremum. To develop a sufficient condition,

we must look at the second-order partial derivatives.
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11.2.2 Second-Order Partial Derivatives

From the function z = f(x, y), we can obtain two first-order partial deriva-

tives, fx and fy. Since fx and fy are themselves functions of x and y, we

can find second-order partial derivatives:

fxx ≡ ∂

∂x
fx or

∂2z

∂x2 ≡ ∂

∂x

(
∂z

∂x

)
;

fyy ≡ ∂

∂y
fy or

∂2z

∂y2 ≡ ∂

∂y

(
∂z

∂y

)
;

fxy ≡ ∂2z

∂x∂y
≡ ∂

∂x

(
∂z

∂y

)
;

fyx ≡ ∂2z

∂y∂x
≡ ∂

∂y

(
∂z

∂x

)
.

The last two are known as cross (or mixed) partial derivatives.

Theorem 11.2.1 (Schwarz’s Theorem or Young’s Theorem) If at least one

of the two partials is continuous, then

∂2f

∂xj∂xi
= ∂2f

∂xi∂xj
, i, j = 1, 2, · · · , n.

Remark 11.2.1 Although fxy and fyx have been separately defined, they

will be identical to each other, according to Young’s theorem, as long as the

two cross-partial derivatives are both continuous. In fact, this theorem also

applies to functions of three or more variables. Given z = g(u, v, w), for

instance, the mixed partial derivatives will be characterized by guv = gvu,

guw = gwu, etc., provided these partial derivatives are continuous.

Example 11.2.1 Find all second-order partial derivatives of

z = x3 + 5xy − y2.
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The first partial derivatives of this function are:

fx = 3x2 + 5y and fy = 5x− 2y.

Thus, fxx = 6x, fyx = 5, and fyy = −2. As expected, fyx = fxy.

Example 11.2.2 For z = x2e−y, its first partial derivatives are

fx = 2xe−y and fy = −x2e−y.

Again, fyx = fxy.

Second-Order Total Differentials

From the first total differential

dz = fxdx+ fydy,

we can obtain the second-order total differential d2z:

d2z ≡ d(dz) = ∂(dz)
∂x

dx+ ∂(dz)
∂y

dy

= ∂

∂x
(fxdx+ fydy)dx+ ∂

∂y
(fxdx+ fydy)dy

= [fxxdx+ fxydy]dx+ [fyxdx+ fyydy]dy

= fxxdx
2 + fxydydx+ fyxdxdy + fyydy

2

= fxxdx
2 + 2fxydxdy + fyydy

2 [ if fxy = fyx].

We know that if f(x, y) satisfy the conditions of Schwarz’s theorem, we

have fxy = fyx.
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Example 11.2.3 Given z = x3 + 5xy − y2, find dz and dz2.

dz =fxdx+ fydy

=(3x2 + 5y)dx+ (5x− 2y)dy.

d2z =fxxdx2 + 2fxydxdy + fyydy
2

=6xdx2 + 10dxdy − 2dy2.

Note that the second-order total differential can be written in matrix

form

d2z = fxxdx
2 + 2fxydxdy + fyydy

2

=
[
dx, dy

] fxx fxy

fyx fyy


dx
dy


for the function z = f(x, y), where the matrix

H =

fxx fxy

fyx fyy


is called the Hessian matrix (or simply a Hessian).

Then, by the discussion on quadratic forms in Chapter 5, we have

(a) d2z is positive definite iff fxx > 0 and |H| = fxxfyy−(fxy)2 >

0;

(b) d2z is negative definite iff fxx < 0 and |H| = fxxfyy−(fxy)2 >

0.

From the inequality fxxfyy − (fxy)2 > 0, it implies that fxx and fyy are

required to take the same sign.
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Example 11.2.4 Give fxx = −2, fxy = 1, and fyy = −1 at a certain point on

a function z = f(x, y), does d2z have a definite sign at that point regardless

of the values of dx and dy? The Hessian determinant is in this case

∣∣∣∣∣∣∣
−2 1
1 −1

∣∣∣∣∣∣∣ ,
with the order of the leading principal minors |H1| = −2 < 0 and

|H2| =

∣∣∣∣∣∣∣
−2 1
1 −1

∣∣∣∣∣∣∣ = 2 − 1 = 1 > 0.

Thus d2z is negative definite.

Example 11.2.5 Give fxx = −2, fxy = 1, and fyy = −1 at a certain point on

a function z = f(x, y), does d2z have a definite sign at that point regardless

of the values of dx and dy? The Hessian determinant is in this case

∣∣∣∣∣∣∣
−2 1
1 −1

∣∣∣∣∣∣∣ ,
with the principal minors |H1| = −2 < 0 and

|H2| =

∣∣∣∣∣∣∣
−2 1
1 −1

∣∣∣∣∣∣∣ = 2 − 1 = 1 > 0.

Thus d2z is negative definite.

For operational convenience, second-order differential conditions can

be translated into equivalent conditions on second-order derivatives. The

actual translation would require knowledge of quadratic forms, which has

already been discussed in Chapter 5.
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Second-Order Sufficient Condition for Extremum

Using the concept of d2z, we have the following:

(a) For maximum of z = f(x, y): d2z < 0 for any values of dx

and dy, not both zero, which is equivalent to:

fxx < 0, fyy < 0, and fxxfyy > (fxy)2;

(b) For minimum of z = f(x, y): d2z > 0 for any values of dx

and dy, not both zero, which is equivalent to:

fxx > 0, fyy > 0, and fxxfyy > (fxy)2.

Remark 11.2.2 When fxxfyy > (fxy)2, fxx and fyy must have the same sign,

i.e., fxx > 0 (resp. < 0) implies that fyy > 0 (or < 0), otherwise fxxfyy >

(fxy)2 cannot be true. Thus, we do not need to check if fyy > 0 (resp. < 0)

when we verify if a stationary point is an extremum.

Therefore, from the above first- and second-order conditions, we obtain

the following proposition for relative extrema.

Proposition 11.2.1 (Conditions for Extremum) Suppose that z = f(x, y) is

twice continuously differentiable. Then, we have:

Conditions for Maximum:

(1) fx = fy = 0 (necessary condition);

(2) |H1| = fxx < 0 and |H2| = fxxfyy > (fxy)2.

Conditions for Minimum:

(1) fx = fy = 0 (necessary condition);

(2) |H1| = fxx > 0 and |H2| = fxxfyy > (fxy)2.
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Example 11.2.6 Find the extreme values of z = 8x3 + 2xy − 3x2 + y2 + 1.

fx = 24x2 + 2y − 6x, fy = 2x+ 2y;

fxx = 48x− 6, fyy = 2, fxy = 2.

Setting fx = 0 and fy = 0, we have

24x2 + 2y − 6x = 0;

2y + 2x = 0.

Then y = −x and thus from 24x2 + 2y − 6y, we have 24x2 − 8x = 0
which yields two solutions for x: x̄1 = 0 and x̄2 = 1/3.

Since fxx(0, 0) = −6 and fyy(0, 0) = 2, fxxfyy − (fxy)2 = −12 − 4 =
−16 < 0, so the point (x̄1, ȳ1) = (0, 0) is not extreme point. For the solution

(x̄2, ȳ2) = (1/3,−1/3), we find that fxx = 10 > 0, fyy = fxy = 2 > 0, and

fxxfyy − (fxy)2 = 20 − 4 > 0, so (x̄, ȳ, z̄) = (1/3,−1/3, 23/27) is a relative

minimum point.

Example 11.2.7 z = x + 2ey − ex − e2y. Letting fx = 1 − ex = 0 and fy =
2e − 2e2y = 0, we have x̄ = 0 and ȳ = 1/2. Since fxx = −ex, fyy = −4e2y,

and fxy = 0, then fxx(0, 1/2) = −1 < 0 and fxxfyy − (fxy)2 > 0. Therefore,

(x̄, ȳ, z̄) = (0, 1/2,−1) is the maximization of the function.

11.3 Objective Functions with More than Two Vari-

ables

When there are n choice variables, the objective function may be expressed

as

z = f(x1, x2, · · · , xn).
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The total differential then is

dz = f1dx1 + f2dx2 + · · · + fndxn

so the necessary condition for an extremum is dz = 0 for arbitrary dxi.

This, in turn, means that all n first-order partial derivatives must be zero:

f1 = f2 = · · · = fn = 0.

It can be verified that the second-order differential d2z can be written

as

d2z =
[
dx1, dx2, · · · , dxn

]


f11 f12 · · · f1n

f21 f22 · · · f2n

· · · · · · · · · · · ·
fn1 fn2 · · · fnn





dx1

dx2

· · ·
dxn


≡ (dx)′Hdx.

Thus the Hessian determinant is

|H| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f11 f12 · · · f1n

f21 f22 · · · f2n

· · · · · · · · · · · ·
fn1 fn2 · · · fnn

∣∣∣∣∣∣∣∣∣∣∣∣∣
and the second-order sufficient condition for extremum is, as before, that
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all the n order of the leading principal minors, k = 1, 2, . . . , n,

|H| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f11 f12 · · · f1k

f21 f22 · · · f2k

· · · · · · · · · · · ·
fk1 fk2 · · · fkk

∣∣∣∣∣∣∣∣∣∣∣∣∣
is positive for a minimum in z and that they duly alternate in sign for a

maximum in z, the first one being negative.

In summary, we have the following proposition.

Proposition 11.3.1 (Conditions for Extremum) Suppose that z = f(x1, x2, . . . , xn)
are twice continuously differentiable. Then, we have:

Conditions for Maximum:

(1) f1 = f2 = · · · = fn = 0 (necessary condition);

(2) |H1| < 0, |H2| > 0, |H3| < 0, · · · , (−1)n|Hn| > 0. (i.e., d2z is

negative definite.

Conditions for Minimum:

(1) f1 = f2 = · · · = fn = 0 (necessary condition);

(2) |H1| > 0, |H2| > 0, |H3| > 0, · · · , |Hn| > 0. (i.e., d2z is

positive definite).

Example 11.3.1 Find the extreme values of

z = 2x2
1 + x1x2 + 4x2

2 + x1x3 + x2
3 + 2.
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From the first-order condition:

f1 = 0 : 4x1 + x2 + x3 = 0;

f2 = 0 : x1 + 8x2 + 0 = 0;

f3 = 0 : x1 + 0 + 2x3 = 0,

we find a unique solution x̄1 = x̄2 = x̄3 = 0. The Hessian determinant of

this function is

|H| =

∣∣∣∣∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
4 1 1
1 8 0
1 0 2

∣∣∣∣∣∣∣∣∣∣
.

Since the order of the leading principal minors of which are all positive:

|H1| = 4 > 0, |H2| = 31 > 0, and |H3| = 54 > 0, we can conclude that

z̄ = 2 is a minimum.

Example 11.3.2 (Least Squares Estimator of Multiple Regression Model)

Consider the multiple regression model:

y = Xβ + ϵ,

where y is an n×1 vector of dependent variables, X is an n×k matrix of k

explanatory variables with rank(X) = k, β is a k × 1 vector of coefficients

to be estimated, and ϵ is an n × 1 vector of disturbances. We assume that

the matrices of observations X and y are given. Our goal is to find an

estimator b for β using the least squares method.

The least squares estimator of β is a vector b, which minimizes the

sum of squared residuals, defined as:

E(b) = (y − Xb)′(y − Xb) = y′y − y′Xb − b′X ′y + b′X ′Xb.

By the formula for matrix differentiation in Chapter 8.7: da′b
db

= a, db′a
db

=
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a, and db′Mb
db

= (M + M ′)b, we know

d(y′X)b
db

= X ′y,

db′(X ′y)
db

= X ′y,

db′X ′Xb

db
= 2X ′X.

Therefore, the first-order condition is given by:

dE(b)
db

= −2X ′y + 2X ′Xb = 0, (11.3.1)

and thus we have the estimator of β:

b = (X ′X)−1X ′y.

Differentiating (11.3.1) and using the formula for matrix differentiation

again, we can obtain a matrix consisting of second-order partial deriva-

tives:
d2E(b)
db2 = (2X ′X)′ = 2X ′X.

To check whether the solution b is indeed a minimum, we need to

prove the positive definiteness of the matrix X ′X . First, notice that X ′X

is a symmetric matrix. To prove positive definiteness, we take an arbitrary

k × 1 vector z, z ̸= 0 and check the following quadratic form:

z′(X ′X)z = (Xz)′(Xz).

Since rank(X) = k and z ̸= 0, Xz ̸= 0. Thus, X ′X is positive definite.

Therefore, the square of the disturbance reaches its minimum:

E(b̄) = y′(I − X(X ′X)−1X ′)y
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by noting that A ≡ (I − X(X ′X)−1X ′) is idempotent, i.e., AA = A.

11.4 Second-Order Conditions in Relation to Con-

cavity and Convexity

Second-order conditions are used to determine whether a stationary point

of a function is a local maximum or minimum. These conditions are close-

ly related to the concept of (strictly) concave and convex functions. A

function is said to be concave (resp. convex) if its graph is shaped like

a hill (resp. valley). However, a hill or valley may not exist over the entire

domain, and we may only have a local maximum or minimum. In this

section, we explore under what conditions a local maximum/minimum

becomes a global maximum/minimum for a concave/convex function.

11.4.1 Concave and Convex Functions

A function that gives rise to a hill (resp. valley) over the entire domain is

said to be a concave (resp. convex) function. If the hill (resp. valley) exists

only on a subset S of the domain, the function is said to be concave (resp.

convex) on S. Formally, we have the following definition.

Definition 11.4.1 Suppose X is a convex set. A function f : X → R is said

to be concave if, for any pair of distinct points u and v in X , and for any

0 < θ < 1,

θf(u) + (1 − θ)f(v) ≤ f(θu + (1 − θ)v)

It is said to be convex if, for any pair of distinct points u and v in X , and

for any 0 < θ < 1,

θf(u) + (1 − θ)f(v) ≥ f(θu + (1 − θ)v).
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Furthermore, if the weak inequality "≤" (resp. "≥") is replaced by the

strictly inequality "<" (resp. ">"), the function is said to be strictly concave

(resp. strictly convex).

Remark 11.4.1 θu + (1 − θ)v consists of line segments between points u

and v when 0 ≤ θ ≤ 1. Thus, in the sense of geometry, the function f is

concave (resp. convex) if and only if the line segment of any two points u

and v lies on or below (resp. above) the surface. The function is strictly

concave (resp. strictly convex) if and only if the line segment lies entirely

below (resp. above) the surface, except at M and N .

Figure 11.2: The graphical illustration of a concave function with two
choice variables and the definition of concavity.

From the definition of concavity and convexity, we have the following

three theorems:

Theorem I (Linear functions). If f(x) is a linear function, then it is a

concave function as well as a convex function, but not strictly so.

Theorem II (Negative of a function). If f(x) is a (strictly) concave

function, then −f(x) is a (strictly) convex function, and vice versa.
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Theorem III (Sum of functions). If f(x) and g(x) are both concave

(resp. convex) functions, then f(x) + g(x) is a concave (resp. convex)

function. Furthermore, if either one or both of them are strictly concave

(resp. strictly convex), then f(x) + g(x) is strictly concave (resp. convex).

In view of the association of concavity (resp. convexity) with a glob-

al hill (valley) configuration, an extremum of a concave (resp. convex)

function must be a peak – a maximum (resp. a bottom – a minimum).

Moreover, the maximum (resp. minimum) must be an absolute maximum

(resp. minimum). Furthermore, the maximum (resp. minimum) is unique

if the function is strictly concave (resp. strictly convex).

In the preceding paragraph, the properties of concavity and convexity

are taken to be global in scope. If they are valid only for a portion of the

surface (only in a subset S of the domainX), the associated maximum and

minimum are relative to that subset of the domain.

We know that when z = f(x1, · · · , xn) is twice continuously differen-

tiable, z = f(x1, · · · , xn) reaches its maximum (resp. minimum) if d2z is

negative (resp. positive) definite.

The following proposition shows the relationship between concavity

(resp. convexity) and negative definiteness.

Proposition 11.4.1 Suppose that a function z = f(·) : X → R is twice contin-

uously differentiable on X . Then,

(1) the said function is concave (resp. convex) if and only if d2z is

everywhere negative (resp. positive) semidefinite, or if and only

if the eigenvalues of the Hessian matrix are all nonpositive (resp.

nonnegative).

(2) it is strictly concave (resp. convex) if (but not only if) d2z is ev-

erywhere negative (resp. positive) definite, i.e., its Hessian matrix

H = D2f(x) is negative (positive) definite on X .
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Remark 11.4.2 As discussed above, the strict concavity of a function f(x)
can be determined by testing whether the order of the leading principal

minors of the Hessian matrix change signs alternately, namely,

|H1| = f11 < 0,

|H2| =

∣∣∣∣∣∣∣
f11 f12

f21 f22

∣∣∣∣∣∣∣ > 0,

|H3| =

∣∣∣∣∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣∣∣∣∣
< 0,

· · · ,

(−1)n|Hn| = (−1)n|H| > 0.

and so on, where fij = ∂2f
∂xi∂xj

. This algebraic condition is very useful for

testing second-order conditions of optimality. It can easily verify whether

a function is strictly concave (resp. strictly convex) by checking whether

its Hessian matrix is negative (resp. positive) definite.

Example 11.4.1 Check z = −x4 for concavity or convexity by the deriva-

tive condition.

Since d2z = −12x2dx2 ≤ 0 for all x and dx2, it is concave. This function,

in fact, is strictly concave.

Example 11.4.2 Check z = x2
1 + x2

2 for concavity or convexity.

Since

|H| =

∣∣∣∣∣∣∣
f11 f12

f21 f22

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
2 0
0 2

∣∣∣∣∣∣∣ ,
|H1| = 2 > 0, |H2| = 4 > 0. Thus, by the proposition, the function is

strictly convex.
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Example 11.4.3 Check if the following production is concave:

Q = f(L,K) = LαKβ,

where L,K > 0; α, β > 0, and α + β < 1.

Since

fL = αLα−1Kβ,

fK = βLαLβ−1;

fLL = α(α− 1)Lα−2Kβ,

fKK = β(β − 1)LαKβ−2,

fLK = αβLα−1Kβ−1,

thus

|H1| = fLL = α(α− 1)Lα−2Kβ < 0;

|H2| =

∣∣∣∣∣∣∣
fLL fLK

fKL fKK

∣∣∣∣∣∣∣ = fLLfKK − (fLK)2

= αβ(α− 1)(β − 1)L2(α−1)K2(β−1) − α2β2L2(α−1)K2(β−1)

= αβ[(α− 1)(β − 1) − αβ]L2(α−1)K2(β−1)

= αβ(1 − α− β)L2(α−1)K2(β−1) > 0.

Therefore, it is strictly concave for L,K > 0, α, β > 0, and α + β < 1.

If we only require a function to be differentiable, but not twice differ-

entiable, the following proposition fully characterizes the concavity of the

function:

Proposition 11.4.2 Let X ⊆ R. Suppose that f : X → R is differentiable. Then
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f is concave if and only if for any x, y ∈ R, we have

f(y) ≤ f(x) + f ′(x)(y − x). (11.4.2)

Indeed, for a concave function u, we can see from Figure 11.3 that

u(x) − u(x∗)
x− x∗ ≤ u′(x∗),

which means (12.4.9).

slope=

slope

Figure 11.3: The graphical illustration why Proposition 11.4.2 holds for a
concave function.

When there are two or more independent variables, the above propo-

sition becomes:

Proposition 11.4.3 Let X ⊆ Rn. Suppose that f : X → R is differentiable on

X . Then f is concave if and only if for any x,y ∈ R, we have

f(y) ≤ f(x) +
n∑
j=1

∂f(x)
∂xj

(yj − xj). (11.4.3)
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11.4.2 Concavity/Convexity and Global Optimization

In general, the local optimum is not necessarily the same as the global op-

timum. However, for a certain class of functions, these two are consistent

with each other.

Theorem 11.4.1 (Local and Global Optimum) Suppose that f is differentiable

and concave on X ⊆ Rn, and x∗ is an interior point of X . Then, the following

three statements are equivalent:

(1) Df(x∗) = 0.

(2) f has a local maximum at x∗.

(3) f has a global maximum at x∗.

PROOF. It is clear that (3) ⇒ (2). Also, by the first-order condition,

(2) ⇒ (1). We just need to prove that (1) ⇒ (3).
Suppose that Df(x∗) = 0. Then, the fact that f is concave implies that

for all x in the domain, we have:

f(x) ≤ f(x∗) +Df(x∗)(x − x∗).

These two formulas mean that for all x, we must have

f(x) ≤ f(x∗).

Therefore, f reaches a global maximum at x∗. 2

When the function is strictly concave (strictly convex), we have the

uniqueness of the optimum. Formally, we have the following theorem.

Theorem 11.4.2 (Uniqueness of Global Optimum) Let X ⊆ Rn.

(1) If a strictly concave function f defined on X reaches a local maximum at

x∗, then f(x∗) is the unique global maximum.
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(2) If a strictly convex function f reaches a local minimum at x̃, then f(x̃) is

the unique global minimum.

PROOF. Proof by contradiction. If f reaches a local maximum at x∗ but

not unique, then there is a point x′ ̸= x∗ such that f(x′) = f(x∗). Suppose

that xt = tx′+(1−t)x∗. Then, strict concavity requires that for all t ∈ (0, 1),

f(xt) > tf(x′) + (1 − t)f(x∗).

Since f(x′) = f(x∗),

f(xt) > tf(x′) + (1 − t)f(x′) = f(x′).

This contradicts the assumption that f(x′) is a global maximum. Con-

sequently, the global maximum of a strictly concave function is unique.

The proof of part (2) is similar and thus omitted. 2

11.5 Economic Applications

Problem of a Multiproduct Firm

Example 11.5.1 Suppose that a competitive firm produces two products.

Let Qi represent the output level of the i-th product, and let the prices of

the products be denoted by P1 and P2. Since the firm is a competitive firm,

it takes the prices as given. Then, the firm’s revenue function is

TR = P1Q1 + P2Q2

The firm’s cost function is assumed to be

C = 2Q2
1 +Q1Q2 + 2Q2

2.
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Then, the profit function of this hypothetical firm is given by

π = TR − C = P1Q1 + P2Q2 − 2Q2
1 −Q1Q2 − 2Q2

2.

The firm wants to maximize the profit by choosing the levels of Q1 and

Q2. For this purpose, setting

∂π

∂Q1
= 0 : P1 − 4Q1 −Q2 = 0;

∂π

∂Q2
= 0 : P2 −Q1 − 4Q2 = 0,

we have

4Q1 +Q2 = P1;

Q1 + 4Q2 = P2,

and thus

Q̄1 = 4P1 − P2

15
and Q̄2 = 4P2 − P1

15
.

Also, the Hessian matrix is

H =

π11 π12

π21 π22

 =

−4 −1
−1 −4

 .

Since |H1| = −4 < 0 and |H2| = 16 − 1 > 0, the Hessian matrix (or

d2z) is negative definite, and the solution does maximize. In fact, since

H is everywhere negative definite, the maximum profit found above is

actually a unique absolute maximum.

Example 11.5.2 Let us now transplant the problem in the above example

into the setting of a monopolistic market.
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Suppose that the demands facing the monopolist firm are as follows:

Q1 = 40 − 2P1 + P2;

Q2 = 15 + P1 − P2.

Again, the cost function is given by

C = Q2
1 +Q1Q2 +Q2

2.

From the monopolist’s demand function, we can express prices P1 and

P2 as functions of Q1 and Q2, and so for the profit function. The reason

we want to do so is that we need to express the profit as the function of

outputs only. Thus, solving

− 2P1 + P2 = Q1 − 40;

P1 − P2 = Q2 − 15,

we have

P1 = 55 −Q1 −Q2;

P2 = 70 −Q1 − 2Q2.

Consequently, the firm’s total revenue function TR can be written as

TR =P1Q1 + P2Q2

=(55 −Q1 −Q2)Q1 + (70 −Q1 − 2Q2)Q2;

=55Q1 + 70Q2 − 2Q1Q2 −Q2
1 − 2Q2

2.
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Thus, the profit function is

π = TR − C

= 55Q1 + 70Q2 − 3Q1Q2 − 2Q2
1 − 3Q2

2,

which is an object function with two choice variables Q1 and Q2. Setting

∂π

∂Q1
= 0 : 55 − 4Q1 − 3Q2 = 0;

∂π

∂Q2
= 0 : 70 − 3Q1 − 6Q2 = 0,

we can find the solution output level is

(Q̄1, Q̄2) = (8, 72
3

).

The prices and profit are

P̄1 = 391
3
, P̄2 = 462

3
, and π̄ = 4881

3
.

Inasmuch as the Hessian determinant is∣∣∣∣∣∣∣
−4 −3
−3 −6

∣∣∣∣∣∣∣ ,
thus |H1| = −4 < 0 and |H2| = 15 > 0. So, Hessian matrix is everywhere

negative definite, and π̄ does represent a unique absolute maximum.



Chapter 12

Optimization with Equality

Constraints

The previous chapter presented a general method for finding the relative

extrema of an objective function of two or more variables. One important

feature of that discussion is that all the choice variables are independent

of one another, in the sense that the decision made regarding one variable

does not depend on the choice of the remaining variables. However, in

many optimization problems, variables are subject to constraints. For in-

stance, a consumer maximizes her utility subject to her budget constraint,

and a firm minimizes the cost of production with the constraint of produc-

tion technique.

In this chapter, we shall consider the problem of optimization with e-

quality constraints. Our primary concern will be with finding the relative

constrained extrema.

195
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12.1 Effects of a Constraint

In general, for a function z = f(x, y), the difference between a constrained

extremum and a free extremum can be illustrated in Figure 12.1.

Figure 12.1: Difference between a constrained extremum and a free ex-
tremum

The free extremum in this particular graph is the peak point of the en-

tire domain, but the constrained extremum is at the peak of the inverse U-

shaped curve situated on top of the constraint line. In general, a constraint

(less freedom) maximum can be expected to have a lower value than the

free (more freedom) maximum, although by coincidence, the two maxi-

ma may happen to have the same value. But the constrained maximum

can never exceed the free maximum. To have a certain degree of freedom

of choices, the number of constraints should be less than the number of

choice variables.
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12.2 Finding the Stationary Values

For the purpose of illustration, let us consider a consumer choice problem:

maximizing the utility function:

u(x1, x2) = x1x2 + 2x1

subject to the budget constraint:

4x1 + 2x2 = 60.

Even without any new technique of solution, the constrained maxi-

mum in this problem can easily be found. Since the budget line implies

x2 = 60 − 4x1

2
= 30 − 2x1,

we can combine the constraint with the objective function by substitution.

The result is an objective function in one variable only:

u = x1(30 − 2x1) + 2x1 = 32x1 − 2x2
1,

which can be handled with the method already learned. By setting

∂u

∂x1
= 32 − 4x1 = 0,

we obtain the solution x̄1 = 8, and thus, by the budget constraint, x̄2 =
30 − 2x̄1 = 30 − 16 = 14. Since d2u

dx2
1

= −4 < 0, this stationary value

constitutes a (constrained) maximum.

However, when the constraint itself is a complicated function, or when

the constraint cannot be solved to express one variable as an explicit func-

tion of the other variables, the technique of substitution and elimination
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of variables could become a burdensome task or would, in fact, be of no

avail. In such cases, we may resort to a method known as the method of

Lagrange multipliers.

Lagrange-Multiplier Method

The essence of the Lagrange-multiplier method is to convert a con-

strained extremum problem into a free-extremum problem so that the first-

order condition approach can still be applied.

In general, given an objective function

z = f(x, y) (12.2.1)

subject to the constraint

g(x, y) = c, (12.2.2)

where c is a constant, we can define the Lagrange function as

Z = f(x, y) + λ[c− g(x, y)],

where the symbol λ represents an unknown constant called the Lagrange

multiplier.

If we can somehow be assured that g(x, y) = c, the last term of Z will

vanish regardless of the value of λ. In that case, Z will be identical to u, and

with the constraint removed, we only need to find the free maximum. The

question is: how can we make the parenthetical expression in Z vanish?

The tactic that will accomplish this is to treat λ as an additional vari-

able, that is, to consider Z = Z(λ, x, y). For stationary values of Z, the
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first-order condition for an interior free extremum is:

Zλ ≡ ∂Z

∂λ
= c− g(x, y) = 0;

Zx ≡ ∂Z

∂x
= fx − λgx(x, y) = 0;

Zy ≡ ∂Z

∂y
= fy − λgy(x, y) = 0.

Example 12.2.1 Let us again consider the consumer’s choice problem above.

The Lagrange function is

Z = x1x2 + 2x1 + λ[60 − 4x1 − 2x2, ]

for which the necessary condition for a stationary value is

Zλ = 60 − 4x1 − 2x2 = 0;

Zx1 = x2 + 2 − 4λ = 0;

Zx2 = x1 − 2λ = 0.

Solving the stationary point of the variables, we find that x̄1 = 8, x̄2 = 14,

and λ = 4. As expected, x̄1 = 8 and x̄2 = 14 are the same obtained by the

substitution method.

Example 12.2.2 Find the extremum of z = xy subject to x + y = 6. The

Lagrange function is

Z = xy + λ(6 − x− y).

The first-order condition is

Zλ = 6 − x− y = 0;

Zx = y − λ = 0;

Zy = x− λ = 0.
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Thus, we find λ̄ = 3, x̄ = 3, ȳ = 3.

Example 12.2.3 Find the extremum of z = x2
1 + x2

2 subject to x1 + 4x2 = 2.

The Lagrange function is

Z = x2
1 + x2

2 + λ(2 − x1 − 4x2).

The first-order condition (FOC) is

Zλ = 2 − x1 − 4x2 = 0;

Zx1 = 2x1 − λ = 0;

Zx2 = 2x2 − 4λ = 0.

The stationary value of Z, defined by the solution

λ̄ = 4
17
, x̄1 = 2

17
, x̄2 = 8

17
,

is therefore Z̄ = z̄ = 4
17 .

To tell whether z̄ is a maximum, we need to consider the second-order

condition.

An Interpretation of the Lagrange Multiplier

The Lagrange multiplier λ̄ measures the sensitivity of Z to change in

the constraint. If we can express the solution λ̄, x̄, and ȳ all as implicit

functions of the parameter c:

λ̄ = λ̄(c), x̄ = x̄(c), and ȳ = ȳ(c),
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all of which will have continuous derivative, we have the identities:

c− g(x̄, ȳ) ≡ 0;

fx(x̄, ȳ) − λ̄gx(x̄, ȳ) ≡ 0;

fy(x̄, ȳ) − λ̄gy(x̄, ȳ) ≡ 0.

Thus, we can consider Z as a function of c:

Z = f(x̄, ȳ) + λ̄[c− g(x̄, ȳ)].

Therefore, we have

dZ̄

dc
= fx

dx̄

dc
+ fy

dȳ

dc
+ [c− g(x̄, ȳ)]dλ̄

dc
+ λ

[
1 − gx

dx̄

dc
− gy

dȳ

dc

]

= (fx − λgx)
dx̄

dc
+ (fy − λgy)

dȳ

dc
+ [c− g(x̄, ȳ)]dx̄

dc
+ λ

= λ.

n-Variable and Multiconstraint Cases

The Lagrange-multiplier method can be easily generalized to cases with

multiple constraints and n variables.

z = f(x1, x2, · · · , xn) (12.2.3)

subject to

g(x1, x2, · · · , xn) = c. (12.2.4)

It follows that the Lagrange function is

Z = f(x1, x2, · · · , xn) + λ[c− g(x1, x2, · · · , xn)],
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for which the first-order condition is given by

Zλ = c− g(x1, x2, · · · , xn) = 0;

Zi = fi(x1, x2, · · · , xn) − λgi(x1, x2, · · · , xn) = 0 [i = 1, 2, · · · , n].

If the objective function has more than one constraint, say, two con-

straints

g(x1, x2, · · · , xn) = c and h(x1, x2, · · · , xn) = d.

The Lagrange function is then defined by

Z = f(x1, x2, · · · , xn) + λ[c− g(x1, x2, · · · , xn)] + µ[d− h(x1, x2, · · · , xn)],

for which the first-order condition consists of (n+ 2) equations:

Zλ = c− g(x1, x2, · · · , xn) = 0;

Zµ = d− h(x1, x2, · · · , xn) = 0;

Zi = fi(x1, x2, · · · , xn) − λgi(x1, x2, · · · , xn) − µhi(x1, x2, · · · , xn) = 0.

Similarly, consider the most general setting of the problem with n vari-

ables and m constraints:

extremize f(x1, . . . , xn) (12.2.5)

s.t. gj(x1, . . . , xn) = bj, j = 1, 2, . . . ,m < n.

The difference n − m is the number of degrees of freedom of the prob-

lem. Note that we must require that n > m, otherwise there is no degree

of freedom to choose.
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The Lagrangian function is given by

Z(x1, . . . , xn, λ1, . . . , λm) = f(x1, . . . , xn) +
m∑
j=1

λj(bj − gj(x1, . . . , xn)).

(12.2.6)

Then we have the following conclusion regarding the equality con-

strained optimization problems.

Proposition 12.2.1 (First-Order Necessary Condition for Interior Extremum)

Suppose that f(x) and gj(x), j = 1, · · · ,m, are continuously differentiable func-

tions defined onX ⊆ Rn withm < n, x∗ is an interior point ofX and an extreme

point (maximal or minimal point) of f —— where f is subject to the constraint

of gj(x∗) = 0, where j = 1, · · · ,m. If the gradient Dgj(x∗) = 0, j = 1, · · · ,m,
are linearly independent, then there is a unique λ∗

j , j = 1, · · · ,m,, such that:

∂Z(x∗, λ∗)
∂xi

= ∂f(x∗)
∂xi

+
m∑
i=1

λ∗
j

∂gj(x∗)
∂xi

= 0, i = 1, · · · , n.

12.3 Second-Order Conditions

From the previous section, we know that finding the constrained extremum

is equivalent to finding the free extremum of the Lagrange function Z and

giving the first-order condition. This section gives the second-order suffi-

cient condition for the constrained extremum of f .

For a constrained extremum of z = f(x, y), subject to g(x, y) = c, the

second-order necessary-and-sufficient conditions still revolve around the

algebraic sign of the second-order total differential d2z, evaluated at the

stationary point. However, there is one important change. In the present

context, we are concerned with the sign definiteness or semidefiniteness

of d2z, not for all possible values of dx and dy (not both zero), but only
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for those dx and dy values (not both zero) satisfying the linear constraint

gxdx+ gydy = 0.

The second-order sufficient conditions are:

• For maximum of z: d2z is negative definite subject to dg = 0.

• For minimum of z: d2z is positive definite subject to dg = 0.

As the (dx, dy) pairs satisfying the constraint gxdx+gydy = 0 constitute

merely a subset of the set of all possible dx and dy, the constrained sign

definiteness is less stringent. In other words, the second-order sufficient con-

dition for a constrained-extremum problem is a weaker condition than that for a

free-extremum problem.

In the following, we shall concentrate on the second-order sufficient

condition in terms of the bordered Hessian.

The Bordered Hessian

In the case of constrained extrema, the second-order sufficient condition

can be expressed in terms of the bordered Hessian instead of the Hessian

determinant |H|.

To develop this method, let us first analyze the conditions for the defi-

niteness of a two-variable quadratic form

q = d11u
2 + 2d12uv + d22v

2

subject to a linear constraint

au+ bv = 0.
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Substituting v = −a
b
u into the quadratic form, we have:

q = d11u
2 − 2d12

a

b
u+ d22

a2

b2 u
2

= [d11b
2 − 2d12ab+ d22a

2]u
2

b2 . (12.3.7)

Then q is positive (negative) definite subject to au+bv = 0 if and only if

the expression in parentheses is positive (negative). However, it is worth

noting that the following bordered determinant

|H̄| ≡

∣∣∣∣∣∣∣∣∣∣
0 a b

a d11 d12

b d21 b22

∣∣∣∣∣∣∣∣∣∣
= −[d11b

2 − 2d12ab+ d22a
2],

which is exactly the negative of the term in parentheses. Consequently, q

is positive (negative) definite subject to au + bv = 0 if and only if |H̄| < 0
(|H̄| > 0).

Parallel to the constrained-extremum problem (12.2.1) of a function z

with two variables and constraint (12.2.2), the second-order sufficient con-

dition for a maximum of z reduces to

|H̄| =

∣∣∣∣∣∣∣∣∣∣
0 gx gy

gx Zxx Zxy

gy Zyx Zyy

∣∣∣∣∣∣∣∣∣∣
> 0,

and the second-order sufficient condition for minimum of z reduces to

|H̄| =

∣∣∣∣∣∣∣∣∣∣
0 gx gy

gx Zxx Zxy

gy Zyx Zyy

∣∣∣∣∣∣∣∣∣∣
< 0,

where in the newly introduced symbols, the horizontal bar above H mean-
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s bordered, and Zij = fij − λgij with i, j = x, y.

Now consider a general case where the objective functions take form

z = f(x1, x2, · · · , xn)

subject to

g(x1, x2, · · · , xn) = c.

The Lagrange function is then

Z = f(x1, x2, · · · , xn) + λ[c− g(x1, x2, · · · , xn)].

Similarly, the bordered Hessian determinant |H̄| is given by

|H̄| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 · · · gn

g1 Z11 Z12 · · · Z1n

g2 Z21 Z22 · · · Z2n

· · · · · · · · · · · · · · ·
gn Zn1 Zn2 · · · Znn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The order of the leading principal minors of the boarded Hessian can

be defined as

|H̄2| =

∣∣∣∣∣∣∣∣∣∣
0 g1 g2

g1 Z11 Z12

g2 Z21 Z22

∣∣∣∣∣∣∣∣∣∣
, |H̄3| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 g3

g1 Z11 Z12 Z13

g2 Z21 Z22 Z23

g3 Z31 Z32 Z33

∣∣∣∣∣∣∣∣∣∣∣∣∣
(etc.)

with the last one being |H̄n| = |H̄|, where the subscript indicates the order

of the leading principal minor being bordered. For instance, |H̄2| involves

the second leading principal minor of the (plain) Hessian, bordered with

0, g1 , and g2; and similarly for the others. The conditions for positive and
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negative definiteness of d2z are then:

d2z is negative definite subject to dg = 0 iff

|H̄2| > 0, |H̄3| < 0, |H̄4| > 0, · · · , (−1)n|H̄n| > 0,

and d2z is positive definite subject to dg = 0 iff

|H̄2| < 0, |H̄3| < 0, |H̄4| < 0, · · · , (|H̄n| < 0.

As previously, a negative definite d2z is sufficient to establish a station-

ary value of z as its maximum, whereas a positive definite d2z is sufficient

to establish it as a minimum.

Summarizing the above discussions, we have the following conclu-

sions.

Proposition 12.3.1 (Second-Order Sufficient Condition for Interior Extremum)

Suppose that z = f(x1, x2, . . . , xn) are twice continuously differentiable and

g(x1, x2, . . . , xn) is differentiable. Then we have:

The Conditions for Maximum:

(1) Zλ = Z1 = Z2 = · · · = Zn = 0 (necessary condition);

(2) |H̄2| > 0, |H̄3| < 0, |H̄4| > 0, · · · , (−1)n|H̄n| > 0.

The Conditions for Minimum:

(1) Zλ = Z1 = Z2 = · · · = Zn = 0 (necessary condition);

(2) |H̄2| < 0, |H̄3| < 0, |H̄4| < 0, · · · , (|H̄n| < 0.

Example 12.3.1 For the objective function z = xy subject to x + y = 6, we

have shown that (x̄, ȳ, z̄) = (3, 3, 9) is a possible extremum solution. Since

Zx = y−λ and Zy = x−λ, then Zxx = 0, Zxy = 1, and Zyy = 0, gx = gy = 1.
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Thus, we find that

|H̄| =

∣∣∣∣∣∣∣∣∣∣
0 1 1
1 0 1
1 1 0

∣∣∣∣∣∣∣∣∣∣
= 2 > 0.

which establishes the stationary value of z̄ = 9 as a maximum.

Example 12.3.2 For the objective function z = x2
1 + x2

2 subject to the con-

straint x1 + 4x2 = 2, we have shown that (x̄, ȳ, z̄) = (2/17, 8/17, 4/17) is a

possible extremum solution. To determine whether it is a maximum, min-

imum, or neither, we need to check the second-order sufficient condition.

Since Z1 = 2x1 − λ and Z2 = 2x2 − λ as well as g1 = 1 and g2 = 4, we

have Z11 = 2, Z22 = 2, and Z12 = Z21 = 0. It thus follows that the bordered

Hessian is

|H̄| =

∣∣∣∣∣∣∣∣∣∣
0 1 4
1 2 0
4 0 2

∣∣∣∣∣∣∣∣∣∣
= −34 < 0,

which is negative. Thus, the extremum point (x̄, ȳ, z̄) = (2/17, 8/17, 4/17)
is a local minimum of the objective function.

Multiconstraint Case

When more than one constraint appears in the problem, the second-order

condition involves a Hessian with more than one border.

Proposition 12.3.2 (Sufficient Condition with Multiple Constraints) Suppose

that f and g1, . . . , gm are twice continuously differentiable functions and x∗ satis-

fies the necessary condition for the problem (12.2.5). Define the bordered Hessian
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|H̄r| as

|H̄r| = det



0 · · · 0 ∂g1

∂x1
· · · ∂g1

∂xr

... . . . ...
... . . . ...

0 · · · 0 ∂gm

∂x1
· · · ∂gm

∂xr

∂g1

∂x1
· · · ∂gm

∂x1
∂2Z

∂x1∂x1
· · · ∂2Z

∂x1∂xr

... . . . ...
... . . . ...

∂g1

∂xr
· · · ∂gm

∂xr

∂2Z
∂xr∂x1

· · · ∂2Z
∂xr∂xr


, r = 1, 2, . . . , n.

Let |H̄r(x∗)| be the bordered Hessian determinant evaluated at x∗. Then

(1) if (−1)r−m+1|H̄r(x∗)| > 0, r = m+ 1, . . . , n, then x∗ is a local maximum

point for the problem (12.2.5);

(2) if (−1)m|H̄r(x∗)| > 0, r = m + 1, . . . , n, then x∗ is a local minimum

point for the problem (12.2.5).

Note that when m = 1, the above second-order sufficient condition

reduces to the second-order sufficient condition with only one constraint.

12.4 Quasiconcavity and Quasiconvexity

For a problem of free extremum, we know that the concavity (resp. con-

vexity) of the objective function guarantees the existence of absolute max-

imum (resp. absolute minimum). For a problem of constrained optimiza-

tion, we will demonstrate that the quasiconcavity (resp. quasiconvexity)

of the objective function guarantees the existence of a global maximum

(resp. global minimum).

Algebraic Characterization

Quasiconcavity and quasiconvexity, like concavity and convexity, can

be either strict or non-strict:
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Definition 12.4.1 A function is quasiconcave if, for any pair of distict points

u and v in the convex domain of f , and for 0 < θ < 1, we have

f(θu + (1 − θ)v) ≥ min{f(u), f(v)}

It is quasiconvex if, for any pair of distict points u and v in the convex

domain of f , and for 0 < θ < 1, we have

f(θu + (1 − θ)v) ≤ max{f(u), f(v)}.

Note that when f(v) ≥ f(u), the above inequalities imply respectively

f(θu + (1 − θ)v) ≥ f(u)

[resp. f(θu + (1 − θ)v) ≤ f(v)].

Furthermore, if the weak inequality "≥" (resp. "≤") is replaced by the

strict inequality ">" (resp. "<"), f is said to be strictly quasiconcave (resp.

strictly quasiconvex).

Figure 12.2: The graphic illustrations of quasiconcavity and quasiconvex-
ity: (a) The function is strictly quasiconcave; (b) the function is strictly
quasiconvex; and (c) the function is quasiconcave but not strictly quasi-
concave.
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Remark 12.4.1 From the definition of quasiconcavity (resp. quasiconvex-

ity), we know that quasiconvity (resp. quasiconvexity) is a weaker condi-

tion than concavity (resp. convexity).

Theorem I (Negative of a function). If f(x) is quasiconcave (resp. strictly

quasiconcave), then −f(x) is quasiconvex (resp. strictly quasiconvex).

Theorem II (concavity versus quaisconcavity). Any (strictly) concave

(resp. convex) function is (strictly) quasiconcave (resp. quasiconvex), but

the converse may not be true.

Theorem III (linear function). If f(x) is linear, then it is quasiconcave

as well as quasiconvex.

Theorem IV (monotone function with one variable). If f is a function

of one variable, then it is quasiconcave as well as quasiconvex.

Remark 12.4.2 Note that, unlike concave (convex) functions, a sum of t-

wo quasiconcave (quasiconvex) functions is not necessarily quasiconcave

(resp. quasiconvex).

Figure 12.3: The graphic representation of the alternative definitions of
quasiconcavity and quasiconvexity.

From Figure 12.3, we can see that a function is quasiconcave (resp. qua-

siconvex) if and only if the upper contour set S≥(k) ≡ {x ∈ X : f(x) ≥ k}
(resp. the lower contour set S≤(k) ≡ {x ∈ X : f(x) ≤ k}) is convex.
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Sometimes it is easier use this alternative (equivalent) definitions to check

quasiconcavity and quasiconvexity. We state it here as a proposition.

Proposition 12.4.1 A function f(x), where x is a vector of variables in the do-

main X , is quasiconcave (resp. quasiconvex) if and only if, for any constant k,

the upper contour set S≥(k) ≡ {x ∈ X : f(x) ≥ k} (resp. the lower contour set

S≤(k) ≡ {x ∈ X : f(x) ≤ k}) is convex.

PROOF. Necessity: Suppose that f is quasiconcave. Let x1 and x2

be two points of S≥(k). We need to show: all weighted averages xθ ≡
θx1 + (1 − θ)x2, θ ∈ [0, 1] are in S≥(k).

Since x1 ∈ S≥(k) and x2 ∈ S≥(k), by the definition of upper contour

set, we have f(x1) = k and f(x2) = k.

Now, for any xθ, since f is quasi-concave, then:

f(xθ) = min[f(x1), f(x2)] = k.

Therefore, f(xθ) = k, and then xθ ∈ S≥(k). Consequently, SS≥(k) must be

a convex set.

Sufficiency: we need to show: if for all k ∈ R, S≥(k) is a convex set,

then f(x) is a quasi-concave function. Let x1 and x2 be two arbitrary

points in X . Without loss of generality, suppose f(x1) = f(x2). Since

for all k ∈ R, S≥(k) is a convex set, then S≥(f(x2)) must be convex.

It is also clear that x2 ∈ S≥(f(x2)), and since f(x1) = f(x2), we have

x1 ∈ S≥(f(x2)). As such, for any weighted average of x1 and x2, we

must have xθ ∈ S≥(f(x2)). It follows from the definition of S≥(f(x2)) that

f(xθ) = f(x2). As a consequence, we must have

f(xθ) = min[f(x1), f(x2)].
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Therefore, f(x) is quasi-concave. 2

Example 12.4.1 (1) Z = x2 is quasiconvex since S≤ is convex.

(2) Z = f(x, y) = xy is quasiconcave since S≥ is convex.

(3) Z = f(x, y) = (x− a)2 + (y − b)2 is quasiconvex since S≤ is convex.

(4) Z = f(x, y) = 1
x

+ 1
y

is quasiconcave since S≥ is convex.

The above facts can be seen by looking at graphs of these functions.

Differentiable Functions

Similar to the concavity, when a function is differentiable, we have the

following proposition.

Proposition 12.4.2 Suppose that f : R → R is differentiable. Then f is quasi-

concave if and only if for any x, y ∈ R, we have

f(y) = f(x) ⇒ f ′(x)(y − x) = 0. (12.4.8)

When there are two or more independent variables, the above propo-

sition becomes:

Proposition 12.4.3 Suppose that f : Rn → R is differentiable. Then f is quasi-

concave if and only if for any x,y ∈ Rn, we have

f(y) = f(x) ⇒
n∑
j=1

∂f(x)
∂xj

(yj − xj) = 0. (12.4.9)

If a function z = f(x1, x2, · · · , xn) is twice continuously differentiable,

quasiconcavity and quansiconvexity can be checked by means of the first

and second order partial derivatives of the function.
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Define a bordered determinant as follows:

|B| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 f1 f2 · · · fn

f1 f11 f12 · · · f1n

f2 f21 f22 · · · f2n

· · · · · · · · · · · · · · ·
fn fn1 fn2 · · · fnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Remark 12.4.3 The determinant |B| is different from the bordered Hes-

sian |H|. Unlike |H|, the border in |B| is composed of the first and second

derivatives of the function f rather than an extraneous constraint function

g and Lagrange function Z.

We can define the successive principal minors of B as follows:

|B1| =

∣∣∣∣∣∣∣
0 f1,

f1 f11

∣∣∣∣∣∣∣ , |B2| =

∣∣∣∣∣∣∣∣∣∣
0 f1 f2

f1 f11 f12

f2 f21 f22

∣∣∣∣∣∣∣∣∣∣
, · · · , |Bn| = |B|.

A necessary condition for a function z = f(x1, · · · , xn) defined the non-

negative orthant to be quasiconcave is that

|B1| ≤ 0, |B2| ≥ 0, |B3| ≤ 0, · · · , (−1)n|Bn| ≥ 0.

A sufficient condition for f to be strictly quasiconcave on the nonneg-

ative orthant is that

|B1| < 0, |B2| > 0, |B3| < 0, · · · , (−1)n|Bn| > 0.

For strict quasiconvexity, the corresponding sufficient condition is that

|B1| < 0, |B2| < 0, · · · , |Bn| < 0.
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Example 12.4.2 z = f(x1, x2) = x1x2 for x1 > 0 and x2 > 0. Since f1 = x2,

f2 = x1, f11 = f22 = 0, and f12 = f21 = 1, the relevant principal minors

turn out to be

|B1| =

∣∣∣∣∣∣∣
0 x2

x2 0

∣∣∣∣∣∣∣ = −x2
2 < 0, |B2| =

∣∣∣∣∣∣∣∣∣∣
0 x2 x1

x2 0 1
x1 1 0

∣∣∣∣∣∣∣∣∣∣
= 2x1x2 > 0.

Thus z = x1x2 is strictly quasiconcave on the positive orthant.

Example 12.4.3 Show that z = f(x, y) = xayb (x, y > 0; a, b > 0) is quasi-

concave.

Since

fx = axa−1yb, fy = bxayb−1;

fxx = a(a− 1)xa−2yb, fxy = abxa−1yb−1, fyy = b(b− 1)xayb−2,

thus

|B1| =

∣∣∣∣∣∣∣
0 fx

fx fxx

∣∣∣∣∣∣∣ = −(axa−1yb)2 < 0;

|B2| =

∣∣∣∣∣∣∣∣∣∣
0 fx fy

fx fxx fxy

fy fyx fyy

∣∣∣∣∣∣∣∣∣∣
= [2a2b2 − a(a− 1)b2 − a2b(b− 1)]x3a−2y3b−2

= ab(a+ b)x3a−2y3b−2 > 0.

Hence it is strictly quasiconcave.

Remark 12.4.4 When the constraint function g(x) is linear: g(x) = a1x1 +
· · · + anxn = c, the second-order partial derivatives of g vanish, and thus,

from the first-order condition fi = λgi, the bordered determinant |B| and
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the bordered Hessian determinant have the following relationship:

|B| = λ2|H̄|.

Consequently, in the linear constraint case, the bordered determinant

|B̄| and the bordered Hessian |H̄| always have the same sign at the sta-

tionary point of z. The same holds for the order of the leading principal

minors. Therefore, if the bordered determinant |B̄| satisfies the sufficien-

t condition for strict quasiconcavity, the bordered Hessian |H̄| must also

satisfy the second-order sufficient condition for constrained maximization.

Absolute versus Relative Extrema

If an objective function is strictly quasiconcave (quasiconvex), and the

constraint function is convex, by similar reasoning for concave (convex)

functions, its relative constrained maximum (minimum) is a unique abso-

lute maximum (absolute minimum), following similar reasoning for con-

cave (resp. convex) functions.

Theorem 12.4.1 (Global Optimum) Suppose that the objective function f is

twice differentiable and strictly quasiconcave, and the constraint functions gj(x)
are differentiable and quasiconvex on X ⊆ Rn. If x∗ is a stationary point of X ,

then f(x∗) is a unique global constrained maximum.

12.5 Utility Maximization and Consumer Demand

Let us now examine the consumer choice problem – utility maximization

problem. For simplicity, only consider the two-commodity case. The con-

sumer wants to maximize her utility:

u = u(x, y) (ux > 0, uy > 0)
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subject to her budget constraint

Pxx+ Pyy = I

by taking prices Px and Py as well as his income I as given.

First-Order Condition

The Lagrange function is

Z = u(x, y) + λ(I − Pxx− Pyy).

At the first-order condition, we have the following equations:

Zλ = I − Pxx− Pyy = 0;

Zx = ux − λPx = 0;

Zy = uy − λPy = 0.

Figure 12.4: The graphical illustration of the conditions for utility maxi-
mization.
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From the last two equations, we have

ux
Px

= uy
Py

= λ,

or
ux
uy

= Px
Py
.

The term ux

uy
≡ MRSxy is the so-called marginal rate of substitution of

x for y. Thus, we obtain the well-known equality: MRSxy = Px

Py
which is

the necessary condition for the interior solution.

Second-Order Condition

If the bordered Hessian in the present problem is positive, i.e., if

|H̄| =

∣∣∣∣∣∣∣∣∣∣
0 Px Py

Px uxx uxy

Py uyx uyy

∣∣∣∣∣∣∣∣∣∣
= 2PxPyuxy − P 2

y uxx − P 2
xuyy > 0,

(with all the derivatives evaluated at the stationary point of x̄ and ȳ), then

the stationary value of u will assuredly be maximum.

Since the budget constraint is linear, from the result in the previous

section, we have

|B| = λ2|H̄|.

Thus, as long as |B| > 0, we know the second-order condition holds.

Recall that |B| > 0 means that the utility function is strictly quasi-

concave.

Also, the quasi-concavity of a utility function means that the indiffer-

ence curves represented by the utility function are convex, i.e., the upper

contour set y : u(y)) ≥ u(x) is convex, and in this case, we say that the

preferences represented by the utility function are convex.
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Remark 12.5.1 The convexity of preferences implies that consumers wan-

t to diversify their consumption, and thus, convexity can be viewed as

the formal expression of the basic measure of economic markets for di-

versification. Also, strict quasi-concavity implies the strict convexity of

≻i, which in turn implies the conventional diminishing marginal rates of

substitution (DMRS), and weak convexity of <i is equivalent to the quasi-

concavity of the utility function ui.

From MRSxy = Px

Py
, we can solve for x or y as a function of the other

and then substitute it into the budget line to find the demand function for

x or y.

Example 12.5.1 Consider that the Cobb-Douglas utility function:

u(x, y) = xay1−a, 0 < a < 1,

which is strictly increasing and concave on R2
++.

Substituting MRSxy = MUx

MUy
= ay

(1−a)x into MRSxy = Px

Py
, we have

ay

(1 − a)x
= Px
Py

and then

y = (1 − a)Pxx
aPy

.

Substituting the above y into the budget line Pxx + Pyy = I and solving

for x, we get the demand function for x

x(Px, Py, I) = aI

Px
.

Substituting the above x(Px, Py, I) into the budget line, the demand
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function for y is obtained:

y(Px, Py, I) = (1 − a)I
Py

.



Chapter 13

Optimization with Inequality

Constraints

Classical optimization methods, such as the method of Lagrange multipli-

ers, handle optimization problems with equality constraints in the form

of g(x1, . . . , xn) = c. On the other hand, non-classical optimization, al-

so known as mathematical programming, deals with problems that have

inequality constraints, such as g(x1, . . . , xn) ≤ c.

Mathematical programming encompasses linear programming and non-

linear programming. In linear programming, the objective function and all

inequality constraints are linear. If either the objective function or an in-

equality constraint is nonlinear, the problem is one of nonlinear program-

ming.

In the following, we restrict our attention to non-linear programming.

13.1 Non-Linear Programming

The nonlinear programming problem is that of choosing nonnegative val-

ues of certain variables so as to maximize or minimize a given (non-linear)

221
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function subject to a given set of (non-linear) inequality constraints.

The nonlinear programming maximum problem is

max f(x1, . . . , xn)

s.t. gi(x1, . . . , xn) ≤ bi, i = 1, 2, . . . ,m;

x1 ≥ 0, . . . , xn ≥ 0.

Similarly, the minimization problem is

min f(x1, . . . , xn)

s.t. gi(x1, . . . , xn) ≥ bi, i = 1, 2, . . . ,m;

x1 ≥ 0, . . . , xn ≥ 0.

Firstly, it is worth noting that unlike the case of equality constraints,

there are no restrictions on the relative size of m and n in nonlinear pro-

gramming problems. Secondly, the direction of the inequalities (≤ or ≥) in

the constraints is only a convention since an inequality like gi ≤ bi can be

easily converted to the opposite inequality by multiplying both sides by

-1, yielding −gi ≥ −bi. Thirdly, an equality constraint, say gk = bk, can be

replaced by two inequality constraints, gk ≤ bk and −gk ≤ −bk.

Now, let us define the term “binding constraint":

Definition 13.1.1 (Binding Constraint) A constraint gj ≤ bj is called bind-

ing (or active) at x0 = (x0
1, . . . , x

0
n) if gj(x0) = bj , i.e., if x0 is a boundary point

of the constraint.
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13.2 Kuhn-Tucker Conditions

For the purpose of eliminating certain irregularities on the boundary of

the feasible set, a restriction is imposed on the constrained functions. This

restriction is known as the constraint qualification. The following is a

stronger version of the constraint qualification, which is easier to verify.

Definition 13.2.1 Let C be the constraint set. We say that the constraint

qualification condition is satisfied at x∗ ∈ C if the gradients (vectors of

partial derivatives) of the gj-constraints associated with all binding con-

straints at x∗ are linearly independent for j = 1, . . . ,m.

We define the Lagrangian function for optimization with inequality

constraints as:

L(x1, . . . , xn, λ1, . . . , λm) = f(x1, . . . , xn) +
m∑
j=1

λj(bj − gj(x1, . . . , xn)).

The following result is the necessity theorem for Kuhn-Tucker condi-

tions for a local optimum.

Theorem 13.2.1 (Necessity Theorem of Kuhn-Tucker Conditions) Suppose

the objective functions and constraint functions are differentiable, and the con-

straint qualification condition is satisfied. Then, we have:

(1) the Kuhn-Tucker necessary condition for maximization is:

∂L

∂xi
≤ 0, xi ≥ 0 and xi

∂L

∂xi
= 0, i = 1, . . . , n;

∂L

∂λj
≥ 0, λj ≥ 0 and λj

∂L

∂λj
= 0, j = 1, . . . ,m.

(2) the Kuhn-Tucker necessary condition for minimization is:

∂L

∂xi
≥ 0, xi ≥ 0 and xi

∂L

∂xi
= 0, i = 1, . . . , n;
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∂L

∂λj
≤ 0, λj ≥ 0 and λj

∂L

∂λj
= 0, j = 1, . . . ,m.

Note that, from xi
∂L
∂xi

= 0, as long as xi > 0, we must have

∂L

∂xi
= 0.

Similarly, as long as λj > 0, we have

∂L

∂λj
= 0.

Therefore, the first-order condition can be equivalently expressed as:

(1) the Kuhn-Tucker necessary condition for maximization is:

∂L

∂xi
≤ 0, with equality if xi > 0, i = 1, . . . , n;

∂L

∂λj
≥ 0, with equality if λj > 0, j = 1, . . . ,m.

(2) the Kuhn-Tucker necessary condition for minimization is:

∂L

∂xi
≥ 0, with equality if xi > 0, i = 1, . . . , n;

∂L

∂λj
≤ 0, with equality if λj > 0, j = 1, . . . ,m.

Example 13.2.1 Consider the following nonlinear program:

max π = x1(10 − x1) + x2(20 − x2)
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s.t. 5x1 + 3x2 ≤ 40;

x1 ≤ 5;

x2 ≤ 10;

x1 ≥ 0, x2 ≥ 0.

The Lagrangian function of the nonlinear program in Example (13.2.1)

is:

L = x1(10−x1)+x2(20−x2)−λ1(5x1 +3x2 −40)−λ2(x1 −5)−λ3(x2 −10).

The Kuhn-Tucker conditions are:

∂L

∂x1
= 10 − 2x1 − 5λ1 − λ2 ≤ 0;

∂L

∂x2
= 20 − 2x2 − 3λ1 − λ2 ≤ 0;

∂L

∂λ1
= −(5x1 + 3x2 − 40) ≥ 0;

∂L

∂λ2
= −(x1 − 5) ≥ 0;

∂L

∂λ3
= −(x2 − 10) ≥ 0;

x1 ≥ 0, x2 ≥ 0;

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0;

x1
∂L

∂x1
= 0, x2

∂L

∂x2
= 0;

λi
∂L

∂λi
= 0, i = 1, 2, 3.

The constraint qualification for the nonlinear program in Example (13.2.1)

is satisfied since all constraints are linear and functionally independen-

t. Therefore, the optimal solution (95
34 ,

295
34 ) must satisfy the Kuhn-Tucker
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condition.

When comparing the Kuhn-Tucker Theorem with Lagrange multipliers

in the context of equality-constrained optimization problems, the major

difference lies in the signs of the multipliers. Specifically, Kuhn-Tucker

multipliers are nonnegative, while Lagrange multipliers can be positive or

negative. This additional information can be useful in various scenarios.

The Kuhn-Tucker Theorem only provides a necessary condition for a

maximum. The following theorem states conditions that guarantee the

sufficiency of the above first-order conditions.

Theorem 13.2.2 (Kuhn-Tucker Sufficiency Theorem) Suppose that the fol-

lowing conditions are satisfied:

(a) f is differentiable and satisfies the condition:

Df(x)(x′ − x) > 0 for any x and x’ with f(x′) > f(x), (13.2.1)

which is satisfied if one of the following two conditions is satisfied:

(a.i) f is concave.

(a.ii) f is quasi-concave and Df(x) ̸= 0 for all x ∈ Rn
+.

(b) Each constraint function is differentiable and quasi-convex.

(c) x∗ satisfies the Kuhn-Tucker condition and Constraint qualification condi-

tion is satisfied at x∗.

Then x∗ is a global maximizer.

PROOF. Suppose x∗ is not a global maximizer. Then, f(x′) > f(x∗) for

some x′ satisfying gi(x′) ≤ di for every i. Then, by condition (13.2.1), we

have Df(x∗)(x′ − x∗) > 0. If λi > 0, the Kuhn-Tucker condition implies
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gi(x∗) = di. Moreover, since gi(·) is quasi-convex and gi(x′) ≤ di = gi(x∗),
we haveDgk(x∗)(x′−x∗) ≤ 0. Therefore, we have bothDf(x∗)(x′−x∗) > 0
and

∑
i λkDgk(x∗)(x′ − x∗) ≤ 0, contradicting the Kuhn-Tucker condition

since it requires that Df(x∗) = ∑
i λkDgk(x∗)(x∗). 2

If instead we have Df(x)(x′ − x) < 0 for all x and x’ with f(x) >

f(x′) and the multipliers have the nonpositive sign that corresponds to a

minimization problem, then x∗ is a global minimizer.

In particular, when there is only one constraint, let C = {x ∈ Rn :
g(x) ≤ d}. We have the following proposition.

Proposition 13.2.1 Suppose f is quasi-concave with Df(x) ̸= 0 for all x ∈ Rn
+,

and C is a convex set (if g is quasi-convex, then this result holds). If x satisfies the

Kuhn-Tucker first-order conditions, then x is a global solution to the constrained

maximization problem.

The problem of finding the nonnegative vector (x∗, λ∗), x∗ = (x∗
1, . . . , x

∗
n),

λ∗ = (λ∗
1, . . . , λ

∗
m), which satisfies the Kuhn-Tucker necessary condition

and for which

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) ∀ x = (x1, . . . , xn) ≥ 0, λ = (λ1, . . . , λm) ≥ 0

is known as the saddle point problem.

Proposition 13.2.2 If (x∗, λ∗) solves the saddle point problem, then (x∗, λ∗)
solves the problem (13.1.1).
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13.3 Economic Applications

Corner Solution for Linear Utility Maximization

Suppose the preference ordering is represented by the linear utility

function :

u(x, y) = ax+ by.

Since the marginal rate of substitution of x for y is a/b and the economic

rate of substitution of x for y is px/py, they cannot be equal in general,

as long as a
b

̸= px

py
. In this case, the solution to the utility maximization

problem typically involves a boundary solution: only one of the two goods

will be consumed.

To find the optimal consumption, we can use the Kuhn-Tucker theo-

rem, which is the appropriate tool to use here, since we will almost never

have an interior solution.

The Lagrange function is

L(x, y, λ) = ax+ by + λ(m− pxx− pyy),

and thus

∂L

∂x
= a− λpx; (13.3.2)

∂L

∂y
= b− λpt; (13.3.3)

∂L

∂λ
= m− px − py. (13.3.4)

There are four cases to be considered:

1. x > 0 and y > 0. Then we have ∂L
∂x

= 0 and ∂L
∂y

= 0. Thus, a
b

= px

py
.

Since λ = a
px
> 0, we have pxx + pyy = m and thus all x and y that

satisfy pxx+ pyy = m are the optimal consumption.
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2. x > 0 and y = 0. Then we have ∂L
∂x

= 0 and ∂L
∂y

≤ 0. Thus, a
b

≥ px

py
.

Since λ = a
px

> 0, we have pxx + pyy = m and thus x = m
px

is the

optimal consumption.

3. x = 0 and y > 0. Then we have ∂L
∂x

≤ 0 and ∂L
∂y

= 0. Thus, a
b

≤ px

py
.

Since λ = b
py

> 0, we have pxx + pyy = m and thus y = m
py

is the

optimal consumption.

4. x = 0 and y = 0. Since the utility function is strictly increasing, we

have pxx+ pyy = m. However, since m ̸= 0, this case is impossible.

In summary, the demand functions are given by

(x(px, py,m), y(px, py,m)) =


(m/px, 0) if a/b > px/py

(0,m/py) if a/b < px/py

(x,m/px − py/pxx) if a/b = px/py

for all x ∈ [0,m/px].

x�

x�

x�

x�

x�

x�

Figure 13.1: Utility maximization for linear utility function

Remark 13.3.1 In fact, it is easily found out the optimal solutions by com-

paring relatives steepness of the indifference curves and the budget line.

For instance, consider Figure 13.1 below. If a
b
> px

py
, the indifference curves

become steeper as we move downwards and to the right, so the optimal

solution is the one where the consumer spends all their income on good
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x. On the other hand, if a
b
< px

py
, the indifference curves become flatter as

we move downwards and to the right, so the optimal solution is the one

where the consumer spends all their income on good y. If a
b

= px

py
, the indif-

ference curves and the budget line are parallel and coincide at the optimal

solutions, and thus the optimal solutions are given by all the points on the

budget line.

Economic Interpretation of the Kuhn-Tucker Condition

A maximization program in the general form, for example, is the pro-

duction problem facing a firm which has to produce n goods such that it

maximizes its revenue subject to m resource (factor) constraints.

The variables have the following economic interpretations:

• xj is the amount produced of the jth product;

• ri is the amount of the ith resource available;

• f is the profit (revenue) function;

• gi is a function which shows how the ith resource is used in produc-

ing the n goods.

The optimal solution to the maximization program indicates the opti-

mal quantities of each good the firm should produce.

In order to interpret the Kuhn-Tucker condition, we first have to note

the meanings of the following variables:

• fj = ∂f
∂xj

is the marginal profit (revenue) of product j;

• λi is the shadow price of resource i;

• gij = ∂gi

∂xj
is the amount of resource i used in producing a marginal

unit of product j;
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• λig
i
j is the imputed cost of resource i incurred in the production of a

marginal unit of product j.

The condition ∂L
∂xj

≤ 0 can be written as fj ≤
m∑
i=1

λig
i
j and it says that the

marginal profit of the jth product cannot exceed the aggregate marginal

imputed cost of the jth product.

The Kuhn-Tucker condition xj ∂L∂xj
= 0 implies that, in order to produce

good j (xj > 0), the marginal profit of good j must be equal to the ag-

gregate marginal imputed cost ( ∂L
∂xj

= 0). The same condition shows that

good j is not produced (xj = 0) if there is an excess imputation xj ∂L∂xj
< 0.

The Kuhn-Tucker condition ∂L
∂λi

≥ 0 is simply a restatement of con-

straint i, which states that the total amount of resource i used in producing

all the n goods should not exceed total amount available ri.

The condition ∂L
∂λi

= 0 indicates that if a resource is not fully used in

the optimal solution ( ∂L
∂λi

> 0), then its shadow price will be 0 (λi = 0). On

the other hand, a fully used resource ( ∂L
∂λi

= 0) has a strictly positive price

(λi > 0).

Example 13.3.1 Let us find an economic interpretation for the maximiza-

tion program given in Example (13.2.1). Consider a firm that produces two

goods using three types of resources available in limited quantities: 40 u-

nits of the first resource, 5 units of the second resource, and 10 units of the

third resource. The first resource is used in the production of both goods,

where 5 units are required to produce one unit of good 1, and 3 units are

required to produce one unit of good 2. The second resource is only used

to produce good 1, while the third resource is only used to produce good

2.

The prices of the two goods are given by the linear inverse demand

equations p1 = 10 −x1 and p2 = 20 −x2, where x1 and x2 are the quantities

of goods 1 and 2 produced, respectively. The firm’s objective is to maxi-
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mize its revenue R = x1p1 + x2p2 subject to the resource constraints and

the non-negativity constraints x1 ≥ 0 and x2 ≥ 0.

The optimization problem can be formulated as:

max R = x1(10 − x1) + x2(20 − x2)

s.t. 5x1 + 3x2 ≤ 40;

x1 ≤ 5;

x2 ≤ 10;

x1 ≥ 0, x2 ≥ 0,

which is exactly the maximization program proposed in Example (13.2.1)

The optimal solution to this problem is (x1, x2) = (2, 10), which indicates

that the firm should produce 2 units of good 1 and 10 units of good 2 in

order to maximize its revenue.


